精英家教网 > 初中数学 > 题目详情
精英家教网(1)如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形.求点C的坐标.
(2)在(1)的条件下,试在直角坐标系内确定点N,使△NOA与△AOC相似,求出所有符合条件的点N的坐标.
分析:(1)过C作CE⊥OA,利用平行四边形的性质得出,C点的横纵坐标;
(2)利用相似三角形的判定,根据△AOC三边长度,得出△NOA三边长度,从而得出所有符合条件的点N的坐标.
解答:精英家教网解:(1)∵四边形OCDB是平行四边形,B(8,0),
∴CD∥OA,CD=OB=8,过点M作MF⊥CD于点F,
则CF=
1
2
CD=4,
过点C作CE⊥OA于点E,
∵A(10,0),
∴OE=OM-ME=OM-CF=5-4=1,
连接MC,则MC=
1
2
OA=5,
∴在RT△CMF中,MF=3,
∴点C的坐标为(1,3);

(2)使△NOA与△AOC相似,
N1(1,-3),N2(9,3),N3(9,-3),N4(10,30),N5(10,-30),N6(10,
10
3
),N7(10,-
10
3
).
点评:此题主要考查了相似三角形的性质与判定以及平行四边形的性质等知识,利用平行四边形的性质得出C点坐标,注意构建直角三角形求出是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-
3
3
x+2与y轴的交点A和点M(-
3
2
,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的精英家教网四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求B点的坐标;
(2)若抛物线y=-x2+bx+c经过点A、B.
①求抛物线的解析式及顶点坐标;
②将抛物线竖直向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼伦贝尔)如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=
3
.△FED不动,△ABC沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分的面积为s.

(1)求出图①中点B的坐标;
(2)如图②,当x=4秒时,点M坐标为(2,
3
3
),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的⊙P在运动过程中是否存在与y轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由.
(3)求出整个运动过程中s与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案