精英家教网 > 初中数学 > 题目详情
问题:在△ABC中,AB=AC,∠A=100°,BD为∠B 的平分线,探究AD、BD、BC之间的数量关系.
请你完成下列探究过程:
(1)观察图形,猜想AD、BD、BC之间的数量关系为                        .
(2)在对(1)中的猜想进行证明时,当推出∠ABC=∠C=40°后,可进一步推出∠ABD=∠DBC=         度.
(3)为了使同学们顺利地解答本题(1)中的猜想,小强同学提供了一种探究的思路:在BC上截取BE=BD,连接DE,在此基础上继续推理可使问题得到解决.你可以参考小强的思路,画出图形,在此基础上对(1)中的猜想加以证明.也可以选用其它的方法证明你的猜想.
(1)AD+BD=BC;(2)20;(3)证明见解析.

试题分析:在BC上截取BE=BD,在BC上截取BF=BA,连接DF,通过证明△ABD≌△FBD得到AD=DF,应用等腰三角形的判定和性质,三角形内角和定理得到∠DBC=20°和AD+BD=BC.
试题解析:(1)AD+BD=BC.
(2)20.
(3)画出图形,证明如下:
在BC上截取BF=BA,连接DF,
∵∠ABD=∠DBC,BD=BD,∴△ABD≌△FBD.∴AD=DF.
∵∠A=100°,∴∠DFB=∠A=100°,∴∠DFC=80°.
∵BE=BD,∠DBC=20°, ∴∠BED =∠BDE =80°,∠DFE =∠FED.
∴DF=DE.
∵∠FED=80°,∠C=40°,∴∠EDC=40°.
∴∠EDC =∠C,∴DE =EC.
∴AD =EC,∴AD+BD=BC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠CEF=75°,CF=,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△DBC中,BC=DC,过点C作CE⊥DC交DB的延长线于点E,过点C作AC⊥BC且AC=EC,连结AB.
求证:AB=ED.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

面给出的三块正方形纸板的边长都是60cm,请分别按下列要求设计一种剪裁方法,折叠成一个礼品包装盒(纸板的厚度忽略不计).要求尽可能多地利用纸板,用虚线表示你的设计方案,并把剪裁线用实线标出.
(1)包装礼盒的六个面由六个矩形组成(如图1),请画出对应的设计图.
                
图1
(2)包装礼盒的上盖由四个全等的等腰直角三角形组成(如图2),请画出对应的设计图.
                   
图2               
(3)包装礼盒的上盖是双层的,由四个全等的矩形组成(如图3),请画出对应的设计图.
  
图3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC交BD于点O,请你从三项中选出两个作为条件,另一个作为结论,写出一个真命题,并加以证明.
①OA=OC   ②OB=OD    ③AB∥CD

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、C、D、B四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

长为9,6,5,4的四根木条,选其中三根组成三角形,选法有(  )
A.1种B.2种C.3种D.4种

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2 cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的图形的面积为( )
A.6 cm2B.3 cm2C.(2+π)cm2D.(6-π)cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知如图DE是△ABC的中位线,AF是BC边上的中线,DE、AF交于点O。现有以下结论:①DE∥BC;②OD=BC;③AO=FO;④。其中正确结论的个数为(  )
A.1B.2 C.3D.4

查看答案和解析>>

同步练习册答案