精英家教网 > 初中数学 > 题目详情
已知如图DE是△ABC的中位线,AF是BC边上的中线,DE、AF交于点O。现有以下结论:①DE∥BC;②OD=BC;③AO=FO;④。其中正确结论的个数为(  )
A.1B.2 C.3D.4
C.

试题分析:∵DE是△ABC的中位线,
∴DE∥BC;DE=BC;
故结论①正确;
∵AF是BC边上的中线,
∴AO是DE边上的中线,
∴DO=DE=
故结论②正确;
∵DE∥BC

又AD=DB
∴AO=OF
故结论③正确;
根据题意知


故结论④错误
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,E是AC上一点,AB=CE,AB∥CD,∠ACB =∠D.求证:BC =ED.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C.
(1)求证:DC是⊙O的切线;
(2)若AD=l,BC=4,求直径AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题:在△ABC中,AB=AC,∠A=100°,BD为∠B 的平分线,探究AD、BD、BC之间的数量关系.
请你完成下列探究过程:
(1)观察图形,猜想AD、BD、BC之间的数量关系为                        .
(2)在对(1)中的猜想进行证明时,当推出∠ABC=∠C=40°后,可进一步推出∠ABD=∠DBC=         度.
(3)为了使同学们顺利地解答本题(1)中的猜想,小强同学提供了一种探究的思路:在BC上截取BE=BD,连接DE,在此基础上继续推理可使问题得到解决.你可以参考小强的思路,画出图形,在此基础上对(1)中的猜想加以证明.也可以选用其它的方法证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面材料:
小明遇到这样一个问题: 如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.
小明研究发现:如图2,拼接的大正方形的边长为, “日”字形的对角线长都为,五个正方形被两条互相垂直的线段AB,CD分割为四部分,将这四部分图形分别标号,以CD为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.
请你参考小明的画法,完成下列问题:
(1)如图3,边长分别为a,b的两个正方形被两条互相垂直的线段AB,CD分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出拼接示意图
(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为,则八角形纸板的边长为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在直径为200cm的圆柱形油槽内装入一些油以后,截面如图所示,若油面的宽AB=160cm,则油的最大深度为   (  )
A.40cmB.60cmC.80cmD.100cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,∠ACB>90°,AD^BC,BE^AC,CF^AB,垂足分别为点D、点E、点F,△ABC中BC边上的高是(    )

A.CF ;    B.BE;     C.AD;       D.CD;

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点 F,且AC=8,tan∠BDC=
 
(1)求⊙O的半径长;
(2)求线段CF长.

查看答案和解析>>

同步练习册答案