【题目】在△ABC中,AB=AC,AC的垂直平分线DE交AC于点D,交BC于点E,且∠BAE=90°,若DE=1,则BE=( )
A.4B.3C.2D.无法确定
科目:初中数学 来源: 题型:
【题目】某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为1m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.
根据设计图纸已知:在图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是.
(1)喷出的水流距水平面的最大高度是多少?
(2)如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,对任意一个正整数n都可以进行这样的分解:n=pq(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称pq是n的最佳分解,并规定:F(n)=,例如12可以分解为112,26或34,因为12-1>6-2>4-3,所以34是最佳分解,所以F(n)=。
(1)如果一个正整数是另外一个正整数b的平方,我们称正整数a是完全平方数,求证:对任意一个完全平方数m,总有F(m)=1
(2)如果一个两位正整数t,t=10x+y (1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们就称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAD=100°,∠B=∠D=90°,在BC、CD上分别找一个点M、N,使△AMN的周长最小,则∠AMN+∠ANM的度数为( )
A.130°B.120°C.160°D.100°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以2cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过 后,点P与点Q第一次在△ABC的 边上相遇?(在横线上直接写出答案,不必书写解题过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】CD是线段AB的垂直平分线,则∠CAD=∠CBD.请说明理由.
解:∵CD是线段AB的垂直平分线(已知),
∴AC=______,______=BD(______)
在△ADC和______中,
______=BC,
AD=______,
CD=______(______),
∴______≌______(______ ).
∴∠CAD=∠CBD (全等三角形的对应角相等).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.
(1)求证:△ADB≌△AFC;
(2)求BD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为轴、轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(5,);
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(10,);
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(,);
④当表示天安门的点的坐标为(,),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(,).
上述结论中,所有正确结论的序号是
A. ①②③ B. ②③④ C. ①④ D. ①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com