精英家教网 > 初中数学 > 题目详情

如图中的△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△AC重合,如果AP3,那么线段的长等于________

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、(1)如图1,△ABC是等边三角形,D是BC边上一点,CF平分∠ACG,E是CF上一点,若∠ADE=60°求证:DA=DE
(2)如图2,四边形ABCD是正方形,M为AB上的一点,BF平分∠CBG,E是BF上一点,若DM⊥ME,与(1)中类似的结论是什么?(不必证明)
(3)在(2)若将DM⊥ME换为MD=ME,能不能证明DM⊥ME?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知△ABC,分别以AB、BC、CA为边向形外作等边三角形ABD、等边三角形BCE、等边三角形ACF.
(1)如图,当△ABC是等边三角形时,请你写出满足图中条件,四个成立的结论;
(2)如图,当△ABC中只有∠ACB=60°时,请你证明S△ABC与S△ABD的和等于S△BCE与S△ACF的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察与发现:
(1)小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?为什么?
精英家教网
实践与运用:
如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).
(2)在图②中连接BB′,判断△BCB′的形状,请说明理由;
(3)图⑥中的△GCC′是等边三角形吗?请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:新课程同步练习 数学 八年级上册 题型:022

如图中,△ABC是等边三角形,点P是三角形内任一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,PH是BC边的高,且AH=h,则PD+PE十PF=________.(用h的代数或1表示.)

查看答案和解析>>

科目:初中数学 来源:三点一测丛书八年级数学上 题型:022

如图中,△ABC是等边三角形,D是BC上一点,△ABD经过旋转后到达△ACE的位置,旋转中心是点________,旋转了________度,若M是AB的中点,则经过上述旋转后,点M转到了________,BD=________,AD=________.

查看答案和解析>>

同步练习册答案