精英家教网 > 初中数学 > 题目详情
(2012•日照)如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,那么∠B=
18°
18°

分析:连接DE、CE,则∠2=θ,∠5=∠6=2θ,∠5+∠6+∠1=180°,在△ACE中,∠3=∠CAE=63°,∠4=180°-∠3-∠CAE,进而1可得出∠θ的度数.
解答:解:连接DE、CE,则∠2=θ,∠5=∠6=2θ,
∵∠6是△BDE的外角,
∴∠6=∠2+∠ABC=2θ,
∵∠5+∠6+∠1=180°,
∴4θ+∠1=180°①,
在△ACE中,
∵AE=CE,
∴∠3=∠CAE=63°,
∴∠4=180°-∠3-∠CAE=180°-63°-63°=54°,
∵∠4+∠1+∠2=180°,即54°+∠1+θ=180°②,
①②联立得,θ=18°.
故答案为:18°.
点评:本题考查的是等腰三角形的性质,三角形内角和定理及三角形外角的性质,根据题意作出辅助线是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•日照)如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;…;依次作下去,则第n个正方形AnBnCnDn的边长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•日照)如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:
(1)CG=BH;
(2)FC2=BF•GF;
(3)
FC2
AB2
=
GF
GB

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•日照)如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆半径r=1,阴影部分的面积记作S2,则S1
S2(用“>”、“<”或“=”填空).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•日照)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(-3,0),经过B点的直线交抛物线于点D(-2,-3).
(1)求抛物线的解析式和直线BD解析式;
(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案