【题目】二次函数y=ax2+bx+c (a≠0)的图象如图所示,对称轴是x=-1.下列结论:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正确的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
【答案】C
【解析】分析: 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断即可.
详解: ①对称轴在y轴的左侧,a,b同号,
∴ab>0,
故①正确;
②由图知:抛物线与x轴有两个不同的交点,
则△=b4ac>0,
∴b2>4ac,
故②正确;
③∵x=-1时,y>0,
∴a-b+c>0,
而c>0,
∴a-b+2c>0,所以④错误;
④由图知:当x=2时y<0,所以4a+2b+c<0,因为b=2a,所以4a+4a+c<0,即8a+c<0,故⑤正确;
故选:C.
点睛: 本题考查的是二次函数图象与系数的关系,掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数的关系是解题的关键.
科目:初中数学 来源: 题型:
【题目】喜迎新年,某社区超市第一次用5000元购进甲、乙两种商品,其中甲商品件数是品的件数的2倍,甲、乙两种商品的进价和售价如下表:
甲 | 乙 | |
进价(元/件) | 15 | 20 |
售价(元/件) | 30 | 30 |
(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(2)能市第二次以第一次的进价又购进甲、乙两种商品,其中购进乙种商品的件数不变,购进甲种商品的件数是第一次购进甲种商品件数的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次甲种商品按原价打几折销售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们约定:对角线相等的四边形称之为:“等线四边形”。
(1)①在“平行四边形、菱形、矩形、正方形”中一定是“等线四边形”的是___________________;
②如图1,若四边形是“等线四边形”, 分别是边的中点,依次连接,得到四边形,请判断四边形的形状:______________________;
(2)如图2,在平面直角坐标系中,已知,以为直径作圆,该圆与轴的正半轴交于点,若为坐标系中一动点,且四边形为“等线四边形”。当的长度最短时,求经过三点的抛物线的解析式;
(3)如图3,在平面直角坐标系中,四边形是“等线四边形”, 在轴的负半轴上,在轴的负半轴上,且。点分别是一次函数与轴,轴的交点,动点从点开始沿轴的正方向运动,运动的速度为2个单位长度/秒,设运动的时间为秒,以点为圆心,半径,单位长度作圆,问:①当与直线初次相切时,求此时运动的时间;②当运动的时间满足且时,与直线相交于,求弦长的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题
(1)填空:
AB= ,BC= ,AC= ;
(2)试判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:
(a,b)★(c,d)=bc-ad.
例如:(1,2)★(3,4)=2×3-1×4=2.
根据上述规定解决下列问题:
(1)有理数对(2,-3)★(3,-2)=_______;
(2)若有理数对(-3,2x-1)★(1,x+1)=7,则x=_______;
(3)当满足等式(-3,2x-1)★(k,x+k)=5+2k的x是整数时,求整数k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么△ABP的面积与点P运动的路程之间的函数图象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(1)求抛物线顶点Q的坐标(用含a的代数式表示);
(2)说明直线与抛物线有两个交点;
(3)直线与抛物线的另一个交点记为N.
①若-1≤a≤一,求线段MN长度的取值范围;
②求△QMN面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,以AO为直径作半圆M,C为OB的中点,D在半圆M上,且CD⊥MD,延长AD交半圆O于点E,且AB=4,则圆中阴影部分的面积为_____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com