精英家教网 > 初中数学 > 题目详情
如图,已知A、B两点的坐标分别为(-4,0)、(0,2),⊙C的圆心坐标为(0,-2),半径为2.若D是⊙C上的一个动点,射线AD与y轴交于点E,当△ABE的面积最大值时,△CDE的面积为(  )
分析:当射线AD与⊙C相切时,△ABE面积的最大.设EF=x,由切割线定理表示出DE,可证明△CDE∽△AOE,根据相似三角形的性质可求得x,然后求得△CDE面积.
解答:解:当射线AD与⊙C相切时,△ABE面积的最大.
如图,连接AC.
∵A点的坐标为(-4,0),⊙C的圆心坐标为(0,-2),半径为2.
∴AO=4,OC=2,即OC为⊙C的半径,则AO与⊙C相切.
∵AO、AD是⊙C的两条切线,
∴AD=AO=4.
连接CD,设EF=x,
∴DE2=EF•OE,
∵CF=2,
∴DE=
x(4+x)

易证△CDE∽△AOE,则
CD
AO
=
CE
AE
,即
2
4
=
2+x
4+
x(4+x)

解得x=
4
3
或x=0(不合题意,舍去),
∴S△CDE=
1
2
DE•CD=
1
2
×
4
3
×4=
8
3

故选C.
点评:本题是一个动点问题,考查了圆的综合题,解题时,涉及到了切线的性质和三角形面积的计算,解题的关键是确定当射线AD与⊙C相切时,△ABE面积的最大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知A、C两点在双曲线y=
1x
上,点C的横坐标比点A的横坐标多2,AB⊥x轴,CD⊥x轴,CE⊥AB,垂足分别是B、D、E.
(1)当A的横坐标是1时,求△AEC的面积S1
(2)当A的横坐标是n时,求△AEC的面积Sn
(3)当A的横坐标分别是1,2,…,10时,△AEC的面积相应的是S1,S2,…,S10,求S1+S2+…+S10的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福田区二模)如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
11
3
11
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A、B两点的坐标分别为(2
3
,0)、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为
3
+1,
3
+1)或(
3
-1,1-
3
3
+1,
3
+1)或(
3
-1,1-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角,连接AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、N两点移动过程,它们的和是否有变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知E、F两点在线段BC上,AB=AC,BF=CE,你能判断线段AF和AE的大小关系吗?说明理由.

查看答案和解析>>

同步练习册答案