精英家教网 > 初中数学 > 题目详情

【题目】某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).

表1

一班

5

8

8

9

8

10

10

8

5

5

二班

10

6

6

9

10

4

5

7

10

8

表2

班级

平均数

中位数

众数

方差

及格率

优秀率

一班

7.6

8

a

3.82

70%

30%

二班

b

7.5

10

4.94

80%

40%

(1)在表2中,a=   ,b=   

(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;

(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.

【答案】187.5;(2理由见解析;(3)P(一男一女)=

【解析】试题分析:1)分别用平均数的计算公式和众数的定义解答即可;

2一班的平均成绩高,方差小,据此求解;

3)列表或树状图后利用概率公式求解即可;

(1)∵数据8出现了4次,最多,

众数a=8;

b==7.5;

(2)一班的平均成绩高,且方差小,较稳定,

故一班成绩好于二班;

(3)列表得:

共有6种等可能的结果,一男一女的有3种,

P(一男一女)==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3EF 分别是ABBC边上的点,且∠EDF=45°.△DAE绕点D逆时针旋转90°,得到△DCM.

1)求证:EF=FM

2)当AE=1时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).

(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以圆O为圆心,半径为1的弧交坐标轴于AB两点,P是弧上一点(不与AB重合),连接OP,设∠POB=α,则点P的坐标是

A. sinαsinα B. cosαcosα C. cosαsinα D. sinαcosα

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是正方形ABCD对角线AC上一点,EFAB,EGBC,垂足分别为E,F,若正方形ABCD的周长是40 cm.

(1)求证:四边形BFEG是矩形;

(2)求四边形EFBG的周长;

(3)AF的长为多少时,四边形BFEG是正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.

(1)求抛物线的表达式;

(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;

(3)如图2,过点F作FMx轴,垂足为M,交直线AC于P,过点P作PNy轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小强作出边长为1的第1个等边A1B1C1,计算器面积为S1,然后分别取A1B1C1三边的中点A2B2C1,作出第2个等边A2B2C2,计算其面积为S2,用同样的方法,作出第3个等边A3B3C3,计算其面积为S3,按此规律进行下去,,由此可得,第20个等边A20B20C20的面积S20=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了 名学生;

(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;

(3)请将频数分布直方图补充完整;

(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2x9x轴交于AB两点,与y轴交于点C,连接BCAC

1)求ABOC的长;

2)点E从点A出发,沿x轴向点B运动(点E与点AB不重合),过点E作直线l平行BC,交AC于点D.设AE的长为mADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;

3)在(2)的条件下,连接CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

查看答案和解析>>

同步练习册答案