精英家教网 > 初中数学 > 题目详情
15.直线y=2x-3与x轴的交点坐标是($\frac{3}{2}$,0).

分析 求出当y=2x-3=0时,x的值,由此即可得出直线y=2x-3与x轴的交点坐标.

解答 解:当y=2x-3=0时,x=$\frac{3}{2}$,
∴直线y=2x-3与x轴的交点坐标是($\frac{3}{2}$,0).
故答案为:($\frac{3}{2}$,0).

点评 本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征求出直线y=2x-3与x轴的交点坐标是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(5,3)、B(5,1).
(1)在图中标出△ABC外心D的位置,并直接写出它的坐标;
(2)判断△ABC的外接圆D与x轴、y轴的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在菱形ABCD中,AB=6cm,∠A=60°,点E以1cm/s的速度沿AB边由A向B匀速运动,同时点F以2cm/s的速度沿CB边由C向B运动,F到达点B时两点同时停止运动.设运动时间为t秒,当△DEF为等边三角形时,t的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知直线y=ax+b与x轴,y轴交于A,B两点,点C的坐标为(a,b).
(1)若点A的坐标为(3,0),点B的坐标为(0,-3),则点C的坐标为(1,-3);
(2)若点D是线段OA的中点,点E的坐标为(1,0),且CE∥BD.点C在直线y=-4x上.
①求直线y=ax+b的解析式;
②点P为直线y=-4x上一点,当S△PAB=$\frac{3}{2}$S△COE时,直接写出点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.校园广播主持人培训班开展比赛活动,分为 A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答下列问题:
(1)补全下面两个统计图(不写过程);
(2)求该班学生比赛的平均成绩;
(3)现准备从等级A的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x-3经过B、C两点.
(1)求抛物线的解析式;
(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列命题中,是真命题的是(  )
A.两条直线被第三条直线所截,同位角相等
B.相等的角是对顶角
C.同旁内角互补,两直线平行
D.互补的两个角一定有一个锐角,一个钝角

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为(-2,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知△ABC,BC的长和BC边上的高AD分别是x,y,它的面积是5.
(1)求出y与x之间的函数解析式.
(2)请通过列表、描点、连线的点法画出这个函数的图象.
(3)若自变量的取值范围是0<x≤10,则y的最大值或最小值是多少?此时,x的值是多少?简单说明理由.

查看答案和解析>>

同步练习册答案