精英家教网 > 初中数学 > 题目详情

【题目】如图,C、D是以AB为直径的O上的点,,弦CD交AB于点E.

(1)当PB是O的切线时,求证:∠PBD=∠DAB;

(2)求证:BC2﹣CE2=CEDE;

(3)已知OA=4,E是半径OA的中点,求线段DE的长.

【答案】(1)证明见解析(2)证明见解析(3)

【解析】

(1)由AB是⊙O的直径知∠BAD+ABD=90°,由PB是⊙O的切线知∠PBD+ABD=90°,据此可得答案;

(2)连接OC,设圆的半径为r,则OA=OB=OC=r,证ADE∽△CBEDECE=AEBE=r2-OE2,由知∠AOC=BOC=90°,根据勾股定理知CE2=OE2+r2、BC2=2r2,据此得BC2-CE2=r2-OE2,从而得证;

(3)先求出BC=4、CE=2,根据BC2-CE2=CEDE计算可得.

(1)AB是⊙O的直径,

∴∠ADB=90°,即∠BAD+ABD=90°,

PB是⊙O的切线,

∴∠ABP=90°,即∠PBD+ABD=90°,

∴∠BAD=PBD;

(2)∵∠A=C、AED=CEB,

∴△ADE∽△CBE,

,即DECE=AEBE,

如图,连接OC,

设圆的半径为r,则OA=OB=OC=r,

DECE=AEBE=(OA﹣OE)(OB+OE)=r2﹣OE2

∴∠AOC=BOC=90°,

CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2

BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2

BC2﹣CE2=DECE;

(3)OA=4,

OB=OC=OA=4,

BC==4

又∵E是半径OA的中点,

AE=OE=2,

CE===2

BC2﹣CE2=DECE,

(42﹣(22=DE2

解得:DE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了响应政府提出的“绿色长垣,文明长垣”的号召,某小区决定开始绿化,要在一块四边形ABCD空地上种植草皮.如图,经测量∠B90°,AB6米,BC8米,CD24米,AD26米,若每平方米草皮需要300元,问需要投入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长为,点,点同时从点出发,速度均2cm/s,沿向点运动,点沿向点运动,则的面积与运动时间之间函数关系的大致图象是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.

(1)求证:DE是O的切线;

(2)当O半径为3,CE=2时,求BD长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y=和y=在第一象限内的图象如图所示,点P在y=的图象上,PC⊥x轴,交y=的图象于点A,PD⊥y轴,交y=的图象于点B,当点P在y=的图象上运动时,以下结论:△ODB与△OCA的面积相等;PA与PB始终相等;四边形PAOB的面积不会发生变化;其中一定正确的是(  )

A. ①②③ B. C. ②③ D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点O为正方形ABCD对角线的交点,且正方形ABCD的边均与某条坐标轴平行或垂直,AB4

(1)如果反比例函数y的图象经过点A,求这个反比例函数的表达式;

(2)如果反比例函数y的图象与正方形ABCD有公共点,请直接写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+3a过点A(﹣1,0).

(1)求抛物线的对称轴;

(2)直线y=x+4与y轴交于点B,与该抛物线对称轴交于点C.如果该抛物线与线段BC有交点,结合函数的图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的三个顶点坐标分别为A(-2,4),B(-3,1),C(-1,1),以坐标原点O为位似中心,相似比为2,在第二象限内将ABC放大,放大后得到A'B'C'.

(1)画出放大后的A'B'C',并写出点A',B',C'的坐标.(A,B,C的对应点为A',B',C')

(2)A'B'C'的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,四边形ABCD内接于⊙O,AC⊥BD于点P,OE⊥AB于点E,F为BC延长线上一点.

(1)求证:∠DCF=∠DAB;

(2)求证:

(3)当图1中点P运动到圆外时,即AC、BD的延长线交于点P,且∠P=90°时(如图2所示),(2)中的结论是否成立?如果成立请给出你的证明,如果不成立请说明理由.

查看答案和解析>>

同步练习册答案