12£®½âÏÂÁз½³ÌºÍ·½³Ì×飮
£¨1£©$\frac{\sqrt{2}}{\sqrt{2}-1}$x+$\frac{1}{\sqrt{2}+1}$=2x+1
£¨2£©$\left\{\begin{array}{l}{\sqrt{2}x-\sqrt{3}y=\sqrt{2}+\sqrt{3}}\\{\sqrt{3}x-\sqrt{2}y=\sqrt{2}-\sqrt{3}}\end{array}\right.$£®

·ÖÎö £¨1£©ÏȽ«·ÖĸÓÐÀí»¯£¬Ôٽⷽ³Ì¼´¿É½â´ð±¾Ì⣻
£¨2£©¸ù¾Ý¼Ó¼õÏûÔª·¨½â·½³Ì×é¼´¿É½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©$\frac{\sqrt{2}}{\sqrt{2}-1}$x+$\frac{1}{\sqrt{2}+1}$=2x+1
·ÖĸÓÐÀí»¯£¬µÃ
$\sqrt{2}£¨\sqrt{2}+1£©x+\sqrt{2}-1=2x-1$
È¥À¨ºÅ£¬µÃ
$2x+\sqrt{2}x+\sqrt{2}-1=2x-1$
ÒÆÏî¼°ºÏ²¢Í¬ÀàÏµÃ
$\sqrt{2}x=-\sqrt{2}$
½âµÃ£¬x=-1£»
£¨2£©$\left\{\begin{array}{l}{\sqrt{2}x-\sqrt{3}y=\sqrt{2}+\sqrt{3}}&{¢Ù}\\{\sqrt{3}x-\sqrt{2}y=\sqrt{2}-\sqrt{3}}&{¢Ú}\end{array}\right.$
$¢Ù¡Á\sqrt{2}-¢Ú¡Á\sqrt{3}$£¬µÃ
x=-5
½«x=-5´úÈë¢Ù£¬µÃ
y=-2$\sqrt{6}$-1
¹ÊÔ­·½³Ì×éµÄ½âÊÇ$\left\{\begin{array}{l}{x=-5}\\{y=-2\sqrt{6}-1}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²é¶þ´Î¸ùʽµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÃ÷È·½â·½³ÌµÄ·½·¨£¬»á·ÖĸÓÐÀí»¯£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®½ñÄêÇåÃ÷¼ÙÆÚÈ«¹úÌú··¢ËÍÂÿÍÔ¼41000000È˴Σ¬½«41000000ÓÿÆÑ§¼ÇÊý·¨±íʾΪ4.1¡Á107£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Ö±½ÇÌÝÐÎABCDÖУ¬AB¡ÎCD£¬¡ÏA=90¡ã£¬CD=3£¬AD=4£¬tanB=2£¬¹ýµãC×÷CH¡ÍAB£¬´¹×ãΪH£®µãPΪÏß¶ÎADÉÏÒ»¶¯µã£¬Ö±ÏßPM¡ÎAB£¬½»BC¡¢CHÓÚµãM¡¢Q£®ÉèPDµÄ³¤Îªx£®
£¨1£©ÇóPMµÄ³¤£¨ÓÃx±íʾ£©£»
£¨2£©ÈôÒÔPMΪֱ¾¶µÄ¡ÑOÇ¡ºÃ¹ýµãCʱ£¬ÇóxµÄÖµ£»
£¨3£©ÈôÒÔPMΪб±ßÏòÏÂ×÷µÈÑüRt¡÷PMN£¬Ö±ÏßMN½»Ö±ÏßABÓÚµãE£®µ±µãEÔÚÏß¶ÎAHÉÏʱ£¬ÇóxµÄȡֵ·¶Î§£® 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDµÄÖܳ¤Îª60ÀåÃ×£¬BF£¬DE·Ö±ðΪ¸ß£¬DCµÄ³¤Îª18ÀåÃ×£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Æ½ÐÐËıßÐÎABCDÖÐÈý¸ö¶¥µãµÄ×ø±êΪA£¨2£¬3£©¡¢B£¨1£¬1£©¡¢C£¨4£¬2£©£¬ÔòDµÄ×ø±êΪ£¨4£¬4£©£¬Æ½ÐÐËıßÐÎABCDµÄÃæ»ýΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬¡÷ABCµÄ´¹ÐÄΪH£¬AD¡ÍBCÓÚD£¬µãEÔÚ¡÷ABCµÄÍâ½ÓÔ²ÉÏ£¬ÇÒÂú×ã$\frac{BE}{CE}=\frac{AB}{AC}$£¬Ö±ÏßED½»Íâ½ÓÔ²ÓÚµãM£®ÇóÖ¤£º¡ÏAMH=90¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¡°y2+1ÊǷǸºÊý¡±Óò»µÈʽ±íʾΪy2+1¡Ý1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®´ÓƽÐÐËıßÐεÄÒ»¸öÈñ½ÇµÄ¶¥µã×÷²»¹ý¸Ã¶¥µãµÄÁ½±ßÉϵÄÁ½Ìõ¸ßÏߣ¬Èç¹ûÕâÁ½Ìõ¸ßÏߵļнÇÊÇ135¡ã£¬ÔòÕâ¸öƽÐÐËıßÐεÄÈñ½ÇµÄ¶ÈÊýÊÇ45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ê¹²»µÈʽx-2¡Ý-3Óë2x+3£¼5ͬʱ³ÉÁ¢µÄxµÄÕûÊýÖµÊÇ£¨¡¡¡¡£©
A£®-2£¬-1£¬0B£®0£¬1C£®-1£¬0D£®²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸