精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数y=ax2+bx+c的图象,下列结论错误的是(
A.二次函数y=ax2+bx+c的最大值为4
B.常数项c为3
C.一元二次方程ax2+bx+c=0的两根之和为﹣2
D.使y≤3成立的x的取值范围是x≥0

【答案】D
【解析】解:A、观察图象知最高点为(﹣1,4),故最大值为4正确,不符合题意; B、与y轴的交点为(0,3),故常数项为3,正确,不符合题意;
C、一元二次方程ax2+bx+c=0的两根之和为﹣3+1=﹣2,正确,不符合题意;
D、使y≤3成立的x的取值范围是x≤﹣2或y≥0,故错误,符合题意;
故选D.
【考点精析】掌握二次函数的性质和二次函数的最值是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.

(1)图1中的△ABC的BC边上有一点D,线段AD将△ABC分成两个互补三角形,则点D在BC边的处.
(2)证明:图2中的△ABC分割成两个互补三角形面积相等;
(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI,已知三个正方形面积分别是17、13、10.则图3中六边形DEFGHI的面积为 . (提示:可先利用图4求出△ABC的面积)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算: +(π﹣1)0﹣( 1
(2)化简:(m+2)(m﹣2)﹣(2﹣m)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,对角线ACBD相交于点O,给出下列四组条件:①AB∥CDAD∥BC②AB=CDAD=BC③AO=COBO=DO④AB∥CDAD=BC。其中一定能判断这个四边形是平行四边形的条件共有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A( ,0),B(3 ,2),C(0,2).动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF⊥AB,交BC于点F,连接DA、DF.设运动时间为t秒.

(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;
②若一抛物线y=﹣x2+mx经过动点E,当S<2 时,求m的取值范围(写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知EF分别为平行四边形ABCD的对边ADBC上的点,且DE=BFEM⊥ACMFN⊥ACNEFAC于点O

求证:(1EM=FN

2EFMN互相平分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为24厘米.甲、乙两动点同时从顶点A出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是______厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图甲是任意一个直角三角形ABC,它的两条直角边的长分别为ab,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为ab的正方形内.

(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③是以________为边长的正方形;

(2)图乙中①的面积为________②的面积为________,图丙中③的面积为________

(3)图乙中①②面积之和为__________

(4)图乙中①②的面积之和与图丙中正方形③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球实验活动一共做了50次,统计结果如下表:

球的颜色

无记号

有记号

红色

黄色

红色

黄色

摸到的次数

18

28

2

2

推测计算:由上述的摸球实验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?

查看答案和解析>>

同步练习册答案