精英家教网 > 初中数学 > 题目详情

【题目】小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是(
A.14分钟
B.17分钟
C.18分钟
D.20分钟

【答案】D
【解析】解:上坡的速度是:400÷5=80米/分钟; 下坡的速度是:(1200﹣400)÷(9﹣5)=200米/分钟;
平路的速度是:(2000﹣1200)÷(17﹣9)=100米/分钟.
则从学校到家需要的时间是: + + =20分钟.
故选:D.
【考点精析】认真审题,首先需要了解函数的图象(函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度数;

(2)求证:CG平分OCD;

(3)当O为多少度时,CD平分OCF,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市有三个景区是人们节假日游玩的热点景区,某学校对七1)班学生五一小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别,A:三个景区;B:游两个景区;C:游一个景区;D:不到这三个景区游玩,现根据调查结果绘制了如下不完全的条形统计图和扇形统计图请结合图中信息解答下列问题:

1)九(1)班现有学生__________人,在扇形统计图中表示“B类别的扇形的圆心角的度数为__________

2)请将条形统计图补充完整;

3)若该校七年级有1000名学生,求计划五一小长假随父母到这三个景区游玩的学生多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A.互为相反数的两数绝对值一定相等B.互为相反数的两数相乘,积一定是负数

C.绝对值等于它本身的数是正数D.零的相反数没有意义

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.

(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线上任意一点,过P作PH丄x轴.垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在笫一象限相交于A、B两点,若DA=2DB.且SABD=4 .求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公交公司有A,B型两种客车,它们的载客量和租金如下表:

A

B

载客量(人/辆)

45

30

租金(元/辆)

400

280

某中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动.设租用A型客车x辆,根据要求回答下列问题:

(1)用含x的式子填写下表:

车辆数(辆)

载客量

租金(元)

A

x

45x

400x

B

5﹣x

   

   

(2)若要保证租车费用不超过1900元,求x的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:

A

B

进价(万元/套)

1.5

1.2

售价(万元/套)

1.65

1.4

该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。

(毛利润=(售价 - 进价)×销售量)

(1)该商场计划购进A,B两种品牌的教学设备各多少套?

(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点 O 为坐标原点,点 A x 轴负半轴上,点 BC 分别在 x 轴、y 轴正半轴上,且 OB=2OAOBOC=OCOA=2

1)求点 C 的坐标;

2)点 P 从点 A 出发以每秒 1 个单位的速度沿 AB 向点 B 匀速运动,同时点 Q 从点 B 出发 以每秒 3 个单位的速度沿 BA 向终点 A 匀速运动,当点 Q 到达终点 A 时,点 PQ 均停止运 动,设点 P 运动的时间为 t 秒(t0),线段 PQ 的长度为 y,用含 t 的式子表示 y,并写出 相应的 t 的范围;

3)在(2)的条件下,过点 P x 轴的垂线 PMPM=PQ,是否存在 t 值使点 O PQ 中 点?若存在求 t 值并求出此时三角形 CMQ 的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案