精英家教网 > 初中数学 > 题目详情
关于x的二次方程x2-9x-2(k-1)=0有两个实数根,一个根大于1,另一个根小于1,则k应满足
 
考点:抛物线与x轴的交点
专题:计算题
分析:把关于x的二次方程x2-9x-2(k-1)=0有两个实数根理解为抛物线y=x2-9x-2(k-1)=0与x轴有两个交点,且两交点在点(1,0)的左右两边,利用抛物线开口方向可得当x=1时,函数值为负,即1-9-2(k-1)<0,然后解不等式即可.
解答:解:∵关于x的二次方程x2-9x-2(k-1)=0有两个实数根,
∴抛物线y=x2-9x-2(k-1)=0与x轴有两个交点,且两交点在点(1,0)的左右两边,
∵抛物线开口向上,
∴当x=1时,y<0,
即1-9-2(k-1)<0,
∴k>-3.
故答案为k>-3.
点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

-7的倒数的相反数是(  )
A、
1
7
B、7
C、-
1
7
D、7-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,已知点A(-4,2),B(-4,0),C(-1,1),请在图上画出△ABC,并画出与△ABC关于原点O对称的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.
(1)求证:DF=CE;
(2)若DB⊥BE,垂足为B,BD=6,BE=8,求四边形AFBE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

超市以3元/千克进购一批西瓜,以4元/千克销售,每天出售200千克,为了促销,决定降价销售,调查发现,这种西瓜每降价0.1元/千克,每天可售出多40千克,另外房租固定为24元.若超市想每天获得最大利润,应将每千克西瓜售价降低多少元?此时最大利润是?(设降低的价格为x元)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.
(1)抛物线的解析式为
 

(2)△MCB的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

直线AB外有C、D两个点,由点A、B、C、D可确定的直线条数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD绕点A逆时针旋转,得到正方形AB′C′D′,当两正方形重叠部分的面积是原正方形面积的
1
4
时,sin
1
2
∠B′AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=3x+b经过点A(2,7),求不等式组3x+b≤0的解集.

查看答案和解析>>

同步练习册答案