【题目】小烨在探究数轴上两点间距离时发现:若
两点在
轴上或与
轴平行,
两点的横坐标分别为
,则
两点间距离为
;若
两点在
轴上或与
轴平行,
两点的纵坐标分别为
,则
两点间距离为
.据此,小烨猜想:对于平面内任意两点
,
两点间的距离为
.
(1)请你利用下图,试证明:;
(2)若
,试在
轴上求一点
,使
的距离最短,并求出
的最小值和
点坐标.
![]()
科目:初中数学 来源: 题型:
【题目】如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是( )
![]()
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为( )
![]()
A. 4 B. 2
C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,该校有几种购买方案?
(3)上面的哪种方案费用最低?按费用最低方案购买需要多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第
秒或第
秒时,△PBQ为直角三角形,正确的有几个 ( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线
经过
,
两点,与x轴交于另一点B.
求此抛物线的解析式;
若抛物线的顶点为M,点P为线段OB上一动点
不与点B重合
,点Q在线段MB上移动,且
,设线段
,
,求
与x的函数关系式,并直接写出自变量x的取值范围;
在同一平面直角坐标系中,两条直线
,
分别与抛物线交于点E、G,与
中的函数图象交于点F、
问四边形EFHG能否成为平行四边形?若能,求m、n之间的数量关系;若不能,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:BD为
的直径,O为圆心,点A为圆上一点,过点B作
的切线交DA的延长线于点F,点C为
上一点,且
,连接BC交AD于点E,连接AC.
如图1,求证:
;
如图2,点H为
内部一点,连接OH,CH若
时,求证:
;
在
的条件下,若
,
的半径为10,求CE的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.
组别 | 时间 | 频数 | 频率 |
A |
| 6 |
|
B |
| a |
|
C |
| 10 |
|
D |
| 8 | b |
E |
| 4 |
|
合计 | 1 |
请根据图表中的信息,解答下列问题:
表中的
______,
______,中位数落在______组,将频数分布直方图补全;
估计该校2000名学生中,每周课余阅读时间不足
小时的学生大约有多少名?
组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com