精英家教网 > 初中数学 > 题目详情
已知抛物线交y轴于点A,交x轴于点B,C(点B在点C的右侧)。如图,过点A作垂直于y轴的直线l. 在y轴右侧、位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q,交x轴于R,连接AP.

(1)求A,B,C三点的坐标;
(2)如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;
(3)若将△APQ沿AP对折,点Q的对应点为点M. 是否存在点P,使得点M落在x轴上.若存在,求出点P的坐标;若不存在,请说明理由.
(1)A(0,4),B(4,0),C(-1,0);(2);(3) 

试题分析:(1)分别求得抛物线与坐标轴的交点坐标即可得到结果;
(2)设,则,分两种情况分析即可得到结果;
(3)构造正方形PQEF,ME=OA=4,AM=AQ=x,则PM=,证得,根据相似三角形的性质可表示出PF,从而可以表示出CM,在中,根据勾股定理即可列方程求得结果.
(1)在中,
时,
时,,解得
∴A(0,4),B(4,0),C(-1,0);
(2)设,则
时,得,解得,此时 
时,得 ,解得,此时
(3)如图构造正方形PQEF,ME=OA=4,AM=AQ=x

PM=
证得   
,即,解得   
     
中,



.
点评:本题知识点多,综合性强,难度较大,一般是中考压轴题,主要考查学生对二次函数的熟练掌握情况.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过点A(1,0),与y轴交于点B。

(1)求抛物线的解析式;
(2)P是y轴上一点,且△PAB是以AB为腰的等腰三角形,请直接写出P点坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,平面直角坐标系中,抛物线轴交于AB两点,点CAB的中点,CDABCD=AB.直线BE轴平行,点F是射线BE上的一个动点,连接ADAFDF.

(1)若点F的坐标为(),AF=.
①求此抛物线的解析式;
②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点AFPQ为顶点构成的四边形是平行四边形,请直接写出点Q的坐标;
(2)若,且AB的长为,其中.如图2,当∠DAF=45时,求的值和∠DFA的正切值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(12分)“快乐购”超市购进一批25元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系式。

(1)试求出y与x的函数关系式;
(2)设“快乐购”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过3080元,现该超市经理要求每天利润不得低于3000元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出答案)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B左侧),与y轴交于点C(0,-3),且抛物线的对称轴是直线x=1.

(1)求b的值;
(2)点E是y轴上一动点,CE的垂直平分线交y轴于点F,交抛物线于P、Q两点,且点P在第三象限.当线段PQ = AB时,求点E的坐标;
(3)若点M在射线CA上运动,过点M作MN⊥y轴,垂足为N,以M为圆心,MN为半径作⊙M,当⊙M与x轴相切时,求⊙M的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的最小值是
A.B.1C.D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图坐标平面上有一透明片,透明片上有一拋物线及一点P,且拋物线为二次函数y=x2的图形,P的坐标(2,4)。若将此透明片向右、向上移动后,得拋物线的顶点坐标为(7,2),则此时P的坐标为 (     )
 
A.(9,4)B.(9,6)C.(10,4) D.(10,6)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数化成的形式,则         

查看答案和解析>>

同步练习册答案