精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B左侧),与y轴交于点C(0,-3),且抛物线的对称轴是直线x=1.

(1)求b的值;
(2)点E是y轴上一动点,CE的垂直平分线交y轴于点F,交抛物线于P、Q两点,且点P在第三象限.当线段PQ = AB时,求点E的坐标;
(3)若点M在射线CA上运动,过点M作MN⊥y轴,垂足为N,以M为圆心,MN为半径作⊙M,当⊙M与x轴相切时,求⊙M的半径.
(1)b="-2" (2)点E的坐标为(0,- ) (3)

试题分析:解:(1)由图可知,对称轴x=1
X===1
即b=-1
(2)∵抛物线的对称轴为直线x=1
∴设抛物线的解析式为y=(x-1)2+k
∵抛物线过点C(0,-3),
∴ (0-1)2+k=-3
解得k=-4
抛物线的解析式为y=(x-1)2-4=x2-2x-3
令y=0,则x2-2x-3=0
解得x1 = 3,x2 = -1
点A坐标为(-1,0),点B坐标为(3,0)
∴AB=4,又PQ = AB
∴PQ ="3"
∵PQ⊥y轴
∴PQ∥x轴
设直线PQ交直线x=1于点G
由抛物线的轴对称性可得,PG=
∴点P的横坐标为 -  
将点P的横坐标代入y=x2-2x-3中,得y =" -"
∴点P坐标为(- ,-
∴点F坐标为(0,-
∴FC=" -"  -( -3)=  
∵PQ垂直平分CE
∴CE="2" FC=
∴点E的坐标为(0,-
(3)设直线l A C:y="k" x+ b(k≠0)
过点A(-1,0),C(0,-3)
∴y=-3x+3
∴M(xM,-3xM+3)
又∵⊙M与x轴相切,MN⊥y轴
∴x M=-3xM+3
∴x M=
∴⊙M的半径为

点评:此类题可以利用抛物线的对称性可求出抛物线的解析式,函数值,两点间的距离,点的坐标,利用对称点的坐标也可以求出其对称轴,要认真体会,灵活应用。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数时的函数值相等。

(1)求二次函数的解析式;
(2)若一次函数的图象与二次函数的图象都经过点,求的值;
(3)设二次函数的图象与轴交于点(点在点的左侧),将二次函数的图象在点间的部分(含点和点)向左平移个单位后得到的图象记为,同时将(2)中得到的直线向上平移个单位。请结合图象回答:当平移后的直线与图象有公共点时,的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形在平面直角坐标系中的位置如图所示,.抛物线)经过点和点,与轴分别交于点(点在点左侧),且,则下列结论:①;②;③;④;⑤连接,则,其中正确结论的个数为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=-x2向左平移2个单位后所得的抛物线解析式是(     )
A.y=-x2-2;B.y=-(x-2)2
C.y=-(x+2)2D.y=-x2+2.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,-4)和B(4,0)
(1)求此二次函数的解析式; 
(2)求此二次函数图象上点A关于对称轴对称的点A′的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的图象如图所示,则下列结论错误的是
A.abc>0 B.a-b+c=0
C.a+b+c>0 D.4a-2b+c>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线交y轴于点A,交x轴于点B,C(点B在点C的右侧)。如图,过点A作垂直于y轴的直线l. 在y轴右侧、位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q,交x轴于R,连接AP.

(1)求A,B,C三点的坐标;
(2)如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;
(3)若将△APQ沿AP对折,点Q的对应点为点M. 是否存在点P,使得点M落在x轴上.若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示的二次函数的图象中,刘敏同学观察得出了下面四条信息:

(1);(2);(3);(4),你认为其中错误的有( )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。
(1)要使每天获得利润700元,请你帮忙确定售价;
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润。

查看答案和解析>>

同步练习册答案