精英家教网 > 初中数学 > 题目详情
10.如图,在边长为5cm的正方形纸片ABCD中,点F在边BC上,已知FB=2cm.如果将纸折起,使点A落在点F上,则tan∠GEA=$\frac{5}{2}$.

分析 如图作GM⊥AB于M,连接FG、AG,设AE=EF=x,在RT△BEF中利用勾股定理求出AE,设DG=y,利用AG=GF,列出方程求出DG,在RT△EGM中即可解决问题.

解答 解:如图作GM⊥AB于M,连接FG、AG.
∵四边形EGHF是由四边形EGDA翻折得到,
∴EF=EA,GF=AG,
设EF=AE=x,在RT△EFB中,∵EF2=BF2+BE2
∴x2=22+(5-x)2
∴x=$\frac{29}{10}$,
∴AE=EF=$\frac{29}{10}$,
设DG=y,则y2+52=(5-y)2+32
∴y=$\frac{9}{10}$,
∵∠D=∠DAB=∠AMG=90°,
∴四边形DAMG是矩形,
∴AM=DG=$\frac{9}{10}$,EM=AE-AM=2,GM=AD=5,
∴tan∠AEG=$\frac{GM}{EM}$=$\frac{5}{2}$.
故答案为$\frac{5}{2}$.

点评 本题考查翻折变换、勾股定理等知识,添加辅助线构造直角三角形是解决问题的关键,学会利用勾股定理列出方程,用方程的思想解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.为了解某市七年级15000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,下列说法正确的是(  )
A.15000名学生的总体B.每个学生是个体
C.500名学生是所抽取的一个样本D.样本容量是500

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB、OC,点E在线段BC上(点E不与点B、C重合),过点E作EM⊥OB于M,EN⊥OC于N,则EM+EN的值为(  )
A.6B.1.5C.$\frac{3}{10}\sqrt{10}$D.$\frac{3}{5}\sqrt{10}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)探究发现:
下面是一道例题及其解答过程,请补充完整:
如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2
证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形
∴∠APP′=60°   PA=PP′PC=P′B
∵∠APB=150°∴∠BPP′=90°
∴P′P2+BP2=P′B2
     即PA2+PB2=PC2
(2)类比延伸:
如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC之间的数量关系,并证明.
(3)联想拓展:
如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,∠AOB=90°,OA=OB,OP是∠AOB内可以绕着点O自由转动的一条射线,分别过点A、B作AE⊥OP、BF⊥OP,垂足分别为点E、F,假设OP从OB出发,绕着点O逆时针转动到OA(OP不与OB、OA重合),转动的角度为α.
(1)当0°<α<45°时,线段AE、BF、EF的长度有怎样的数量关系?为什么?
(2)当45°<α<90°时,线段AE、BF、EF的长度又有怎样的数量关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图①,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A、B,点A、B的坐标分别是(-1,0)、(4,0),与y轴交于点C,点P在第一、二象限的抛物线上,过点P作x轴的平行线分别交y轴和直线BC于点D、E,设点P的横坐标为m,线段DE的长度为d.
(1)求这条抛物线对应的函数表达式;
(2)当点P在第一象限时,求d与m之间的函数关系式;
(3)在(2)的条件下,当PE=2DE时,求m的值;
(4)如图②,过点E作EF∥y轴交x轴于点F,直接写出四边形ODEF的周长不变时m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.一个正方体的体积是16cm3,另一正方体的体积是这个正方体体积的4倍,求另一个正方体的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知一个正多边形的每个外角都等于72°,则这个正多边形是(  )
A.正五边形B.正六边形C.正七边形D.正八边形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,点G是△ABC的重心,GE∥BC,如果BC=12,那么线段GE的长为4.

查看答案和解析>>

同步练习册答案