精英家教网 > 初中数学 > 题目详情
如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是    
 

试题分析:∵∠AED与∠ABC都对
∴∠AED=∠ABC,
在Rt△ABC中,AB=2,AC=1,
根据勾股定理得:BC=
则cos∠AED=cos∠ABC= =
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB=,BP=6,AP=1,求QC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.
(1)求证:DC为⊙O的切线;
(2)若⊙O的半径为3,AD="4" ,求AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点O1、O2在直线l上,⊙O1的半径为2cm,⊙O2的半径为3cm,4cm<O1O2<8cm.⊙O1与⊙O2
不可能出现的位置关系是( )
A.外离 B.外切C.相交D.内切

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t(秒).
(1)求AD的长;
(2)设四边形BFED的面积为y,求y 关于t的函数关系式并写出自变量的取值范围
(3)当t为何的值时,以EE为半径的⊙F与CD边只有一个公共点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中A(2,0),以A为圆心,1为半径作⊙A,若P是⊙A上任意一点,则的最大值为(      )
A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC中,∠C=90°,点D在边AB上,AD=AC=7,BD=BC.动点M从点C出发,以每秒1个单位的速度沿CA向点A运动,同时,动点N从点D出发,以每秒2个单位的速度沿DA向点A运动.当一个点到达点A时,点M、N两点同时停止运动.设M、N运动的时间为t秒.
⑴ 求cosA的值.
⑵ 当以MN为直径的圆与△ABC一边相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案