精英家教网 > 初中数学 > 题目详情

【题目】如图,将线段AB绕点A逆时针旋转60°得AC,连接BC,作△ABC的外接圆⊙O,点P为劣弧 上的一个动点,弦AB,CP相交于点D.

(1)求∠APB的大小;
(2)当点P运动到何处时,PD⊥AB?并求此时CD:CP的值;
(3)在点P运动过程中,比较PC与AP+PB的大小关系,并对结论给予证明.

【答案】
(1)解:∵AB=AC,∠BAC=60°,

∴△ABC是等边三角形,

∵∠APB+∠ACB=180°,

∴∠APB=120°


(2)解:当点P运动到 的中点时,PD⊥AB,

如图1,连接PC,OA,OB,设⊙O的半径为r,则CP=2r,

又∵⊙O为等边△ABC的外接圆,

∴∠OAB=30°,

在Rt△OAD中,

∵OD= OA=

∴CD= +r=

∴CD:CP= :2r=3:4


(3)解:PC=AP+PB

证明:方法一:

如图2,在AP的延长线上取点Q,使PQ=PB,连接BQ,

∵∠APB=120°,

∴∠BPQ=60°,

∴△BPQ是等边三角形,

∴PB=BQ,

∵∠CBP=∠CBA+∠ABP=60°+∠ABP,

∠ABQ=∠QBP+∠ABP=60°+∠ABP,

∴∠ABQ=∠CBP,

在△ABQ和△CBP中,PB=QB,∠CBP=∠ABQ,CB=AB,

∴△ABQ≌△CBP,

∴CP=AQ=AP+PQ=AP+PB,即PC=AP+PB;

方法二:如图3,B为圆心,BP为半径画圆交CP于点M,连接BM,

∵∠CPB=60°,

∴△PBM是等边三角形,

∵∠CMB=120°,

∴∠CMB=∠APB,

∴△APB≌△CMB,

∴PC=AP+PB;

方法三:(略证)如图4,以A为圆心,A为半径画圆交CP于N,连接AN,

先证△APN是等边三角形,再证△ANC≌△APB,

从而PC=AP+PB.


【解析】(1)先根据题意判断出△ABC是等边三角形,再根据圆内接四边形对角互补的性质可知∠APB+∠ACB=180°,进而可得出结论;(2)连接PC,OA,OB,设⊙O的半径为r,则CP=2r,根据⊙O为等边△ABC的外接圆可求出∠OAB=30°,再根据直角三角形的性质可用r表示出OD,CD的值,进而得出结论;(3)在AP的延长线上取点Q,使PQ=PB,连接BQ,可判断出△BPQ是等边三角形,再根据全等三角形的判定定理得出△ABQ≌△CBP,由全等三角形的性质即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD内一点P,AB=5,BP=2,把△ABP绕点B顺时针旋转90°得到△CBP',则PP'的长为(

A.2
B.
C.3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图像可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图像,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将(1)、(2)、(3)补充完整:
(1)①将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
当x<0时,原不等式可以转化为x2+4x﹣1<
②构造函数,画出图像
设y3=x2+4x﹣1,y4= , 在同一坐标系中分别画出这两个函数的图像.
双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(2)确定两个函数图像公共点的横坐标
观察所画两个函数的图像,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
(3)借助图像,写出解集
结合(1)的讨论结果,观察两个函数的图像可知:不等式x3+4x2﹣x﹣4>0的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】出租车司机小王某天下午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:

+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.

(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?

(2)若汽车耗油量为0.05升/千米,这天下午小王的汽车共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.

(1)写出方程ax2+bx+c=0的解;
(2)若ax2+bx+c>mx+n,写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.

1)文学书和科普书的单价各多少钱?

2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某生产小组有名工人,调查每个工人的日均零件生产能力,获得如表数据:

日均生产零件的个数(个

工人人数(人)

求这名工人日均生产零件的众数、中位数、平均数.

为提高工作效率和工人的工作积极性,生产管理者准备实行每天定额生产,超产有奖的措施,如果你是管理者,你将如何确定这个定额?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

(1)小明总共剪开了_______条棱.

(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.

(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.

查看答案和解析>>

同步练习册答案