精英家教网 > 初中数学 > 题目详情

已知△ABC中,∠B=45°,AB=数学公式,tanC=2,⊙O过点A、C,交BC边于点D.且数学公式,求CD的长.

解:如图,连接AC,延长AO交BC于点E.

∴AD=AC,
∵点O是等腰△ACD的外心,
∴AE⊥CD,且CD=2CE.
∴在直角△ABE中,∠B=45°,AB=,则AE=4.
∵tanC=2,
=2,即AE=2CE,
∴CD=AE=4,即线段CD的长度是4.
分析:如图,连接AC,延长AO交BC于点E.根据圆心角、弧、弦间的关系推知△ACD是等腰三角形,由其“三合一”的性质证得AE是CD的中垂线.在直角△AEC中根据勾股定理求得线段CE的长度,进而根据垂径定理来求线段CD的长度.
点评:本题考查了等腰直角三角形的判定与性质、解直角三角形以及圆心角、弧、弦间的关系.注意解题过程中要证明一下AE是线段CD的中垂线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分别是边AB、BC上的动点,且点P不与点A、B重合,点Q不与点B、C重合.
(1)在以下五个结论中:①∠CQP=45°;②PQ=AC;③以A、P、C为顶点的三角形全等于△PQB;④以A、P、C为顶点的三角形全等于△CPQ;⑤以A、P、C为顶点的三角形相似于△CPQ.一定不成立的是
 
.(只需将结论的代号填入题中的模线上).
(2)设AC=BC=1,当CQ的长取不同的值时,△CPQ是否可能为直角三角形?若可能,请说明所有的精英家教网情况;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,则四边形DBFE的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F
(1)求证:DF是⊙O的切线;
(2)连接DE,且AB=4,若∠FDC=30°,试求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-9x+20=0的一个根,则该三角形为
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AB垂直平分线交AC于D,连接BE,若∠A=40°,则∠EBC=(  )

查看答案和解析>>

同步练习册答案