精英家教网 > 初中数学 > 题目详情

【题目】某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:

运动项目

频数人数

羽毛球

30

篮球

a

乒乓球

36

排球

b

足球

12

请根据以上图表信息解答下列问题:

频数分布表中的____________

在扇形统计图中,排球所在的扇形的圆心角为______度;

全校有多少名学生选择参加乒乓球运动?

【答案】 24 18 54

(3)360人

【解析】分析:(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b

(2)利用360°乘以对应的百分比即可求得;

(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.

详解:(1)抽取的人数是36÷30%=120(人),

a=120×20%=24,

b=120-30-24-36-12=18.

故答案是:24,18;

(2)“排球所在的扇形的圆心角为360°×18120=54°,

故答案是:54;

(3)全校总人数是120÷10%=1200(人),

则选择参加乒乓球运动的人数是1200×30%=360(人).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=4

(1)求证:AC是⊙O的切线;

(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD

1)在图1中,若∠BCE=40°,求∠ACF的度数;

2)在图1中,若∠BCE=α,直接写出∠ACF的度数(用含α的式子表示);

3)将图1中的三角板ABC绕顶点C旋转至图2的位置,探究:写出∠ACF与∠BCE的度数之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为拓宽销售渠道,某水果商店计划将146个柚子和400个橙子装入大、小两种礼箱进行出售,其中每件小礼箱装2个柚子和4个橙子;每件大礼箱装3个柚子和9个橙子.要求每件礼箱都装满,柚子恰好全部装完,橙子有剩余,设小礼箱的数量为x.

1)大礼箱的数量为________(用含x的代数式表示).

2)若橙子剩余12个,则需要大、小两种礼箱共多少件?

3)由于橙子有剩余,则小礼箱至少需要________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过正方形ABCD的顶点DDEACBC的延长线于点E

1)判断四边形ACED的形状,并说明理由;

2)若BD=8cm,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于B两点,与y轴交于点,抛物线的对称轴交x轴于点D

求抛物线的解析式;

的值;

在抛物线的对称轴上是否存在点P,使是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;

E是线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时线段EF最长?求出此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E, 折痕为AF,若CD=6,则AF等于__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是学习初中数学的- -个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点、点表示的数为,则两点之间的距离,若,则可简化为;线段的中点表示的数为如图,已知数轴上有两点,分别表示的数为,点以每秒个单位长度的速度沿数轴向右匀速运动,点以每秒个单位长度向左匀速运动,设运动时间为

1)运动开始前,两点的距离为多少个单位长度;线段的中点所表示的数为?

2)点运动秒后所在位置的点表示的数为 ;点 运动秒后所在位置的点表示的数为 (用含的式子表示

3)它们按上述方式运动,两点经过多少秒会相距个单位长度?

4)若按上述方式运动, 两点经过多少秒,线段的中点与原点重合?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+2 x轴交于A,B两点,与y轴交于点C,AB=4.矩形OADC的边CD=1,延长DC交抛物线于点E.

(1)求抛物线的表达式;

(2)点P是直线EO 上方抛物线上的一个动点,作PHEO,垂足为H,求PH的最大值;

(3)点M在抛物线上,点N在抛物线的对称轴上,若四边形ACMN是平行四边形,求点M、N的坐标.

查看答案和解析>>

同步练习册答案