精英家教网 > 初中数学 > 题目详情

【题目】油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:

油电混动汽车

普通汽车

购买价格

17.48

15.98

每百公里燃油成本(元)

31

46

某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为(  )

A. 5000 B. 10000 C. 15000 D. 20000

【答案】B

【解析】

设预计平均每年行驶x公里,根据已知条件分别列出两种汽车10年的用车成本,再根据“选择油电混动汽车的成本不高于选择普通汽车的成本”列出不等式进行解答即可.

设平均每年行驶的公里数至少为x公里,根据题意得:

174800+x×10≤159800+x×10

解得:x≥10000,即预计平均每年行驶的公里数至少为10000公里

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某物流公司引进AB两种机器人用来搬运某种货物这两种机器人充满电后可以连续搬运5小时A种机器人于某日0时开始搬运过了1小时B种机器人也开始搬运如图线段OG表示A种机器人的搬运量yA(千克)与时间x()的函数图象根据图象提供的信息解答下列问题

(1)yB关于x的函数解析式;

(2)如果AB两种机器人连续搬运5小时那么B种机器人比A种机器人多搬运了多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1 , 点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2 , 点A1的对应点为点A2

(1)画出△A1B1C1
(2)画出△A2B2C2
(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点(2,﹣4)在反比例函数y= 的图象上,则下列各点在此函数图象上的是(  )
A.(2,4)
B.(﹣1,﹣8)
C.(﹣2,﹣4)
D.(4,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示EFGH分别是四边形ABCD的边ABBCCDAD的中点

(1)当四边形ABCD是矩形时四边形EFGH是_________请说明理由;

(2)当四边形ABCD满足什么条件时四边形EFGH为正方形?并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求代数式( )÷ 的值,其中a=2sin60°+tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元。设生产A种产品的生产件数为x, A、B两种产品所获总利润为y (元)

(1)试写出yx之间的函数关系式;

(2)求出自变量x的取值范围;

(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,- )三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.

(1)该水果店两次分别购买了多少元的水果?

(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?

查看答案和解析>>

同步练习册答案