精英家教网 > 初中数学 > 题目详情
17.在平面直角坐标系xOy中有一矩形ABCD,如果A(1,0)、B(5,0)、C(5,3),那么该矩形对角线交点P的坐标为(3,1.5).

分析 由矩形的性质得出AP=CP,利用中点坐标公式即可求出P点坐标,

解答 解:(1)∵四边形ABCD是矩形,
∴AP=CP,
∵点A (1,0),C(5,3),
∴对角线的交点P($\frac{1+5}{2}$,$\frac{0+3}{2}$),
即(3,1.5),
故答案为:(3,1.5).

点评 本题主要考查了矩形的性质、坐标与图形性质、中点坐标公式;熟记矩形的性质和公式是关键

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.(1)如图1,已知△ABC的面积是30,CD、BE分别是△ABC的AB、AC边上的中线,CD、BE相交于点O,求四边形ADOE的面积可以用如下方法:连结AO,由AD=DB得:S△ADC=$\frac{1}{2}$S△ABC=15,S△ADO=S△BDO,同理:S△ABE=$\frac{1}{2}$S△ABC=15,S△AEO=S△CEO,设S△ADO=x,S△AEO=y,则S△BDO=x,S△CEO=y,由题意,可列方程组为:$\left\{\begin{array}{l}2x+y=15\\ x+2y=15\end{array}$,通过解这个方程组可求得四边形ADOE的面积为10.

(2)如图2,△ABC的面积是36,D、E分别是边AB、AC边上的点,且AD:DB=1:3,CE:AE=1:2,请你计算四边形ADOE的面积.
(3)如图3,?ABCD中,E是BC上一点,F是AB上一点,AE=CF,AE与CF交于点P,连结PD.求证:PD平分∠APC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,在菱形ABCD中,点E为AD的中点,点F为折线A-B-C-D上一个动点(从点A出发到点D停止),连结EF,设点F的运动路径的长为x,EF2为y,y关于x的函数图象由C1,C2,C3三段组成,已知C2与C3的界点N的坐标如图2所示.
(1)求菱形的边长;
(2)求图2中图象C3段的函数解析式;
(3)当7≤y≤28时,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.【探索发现】
如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为$\frac{1}{2}$.

【拓展应用】
如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为$\frac{ah}{4}$.(用含a,h的代数式表示)
【灵活应用】
如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
【实际应用】
如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=$\frac{4}{3}$,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列运算中,正确的是(  )
A.x2+x3=x5B.(x34=x7C.x6÷x2=x3D.3x2-x2=2x2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(4,2),点B的坐标为(-2,-2),则点C的坐标为(  )
A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.能与60°的角互余的角是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在矩形纸片ABCD中,已知AB=1,BC=$\sqrt{3}$,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.
(1)当B′C′恰好经过点D时(如图1),求线段CE的长;
(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积;
(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.

查看答案和解析>>

同步练习册答案