精英家教网 > 初中数学 > 题目详情

【题目】已知A、B、C分别是⊙O上的点,∠B=60°,P是直径CD的延长线上的一点,且AP=AC. 如果AC=3,PD的长为______________________.

【答案】

【解析】分析:连接OA,求出∠AOC和∠ACP,得出∠P,求出∠AOD,推出∠PAO=90°,从而得出OA为切线,连接AD,根据∠ACD=30°,AC=3求出DC,求出半径,在Rt△PAO中根据勾股定理求出即可.

详解:如图,连接OA,AD, ∵∠B=60°,∴∠AOC=2∠B=120°.

∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°. 又∵AP=AC,∴∠P=∠ACP=30°.

∴∠OAP=90°,即OA⊥AP.  ∵点O在⊙O上,∴AP是⊙O的切线;

∵CD是⊙O的直径,∴∠CAD=90°. ∴AD=ACtan30°=,CD=2AD=2

∴DO=AO=CD=Rt△PAO中,由勾股定理得:

, ∵PD的值为正数, ∴PD=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B=90°,AC=60 cm,A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t(0<t≤15).过点DDFBC于点F,连接DE,EF。

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

(3)t为何值时,DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,O为直线AB上一点,过点O作射线OC,AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OMOC都在直线AB的上方.

(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=   (直接写结果)

(2)(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;

(3)(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数 y=(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1 , y2 , y3的大小关系是(  )
A.y3<y1<y2
B.y3<y2<y1
C.y1<y2<y3
D.y2<y3<y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一渔船由西往东航行A点测得海岛C位于北偏东60°的方向前进20海里到达B此时测得海岛C位于北偏东30°的方向则海岛C到航线AB的距离CD等于_______海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:
①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④SAOE=SCOE
其中正确结论有(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列判断正确的是(

A. 有理数就是正数和负数 B. 没有最小的有理数

C. 任何两个有理数一定可以进行加减乘除运算 D. 中,负数共有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数填在相应的集合内:

100,﹣0.82,﹣30,3.14,﹣2,0,﹣2011,﹣3.1,﹣,2.010010001…,

正分数集合:{    …}

整数集合:{   …}

负有理数集合:{    …}

非正整数集合;{   …}

无理数集合:{    …}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是直线AB上的一点,OC为任一射线,OD平分∠BOC,OE平分∠AOC.

(1)指出图中∠AOD的补角和∠BOE的补角;

(2)若∠BOC=68°,求∠COD和∠EOC的度数;

(3)COD与∠EOC具有怎样的数量关系?

查看答案和解析>>

同步练习册答案