精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y= (x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积(
A.减小
B.增大
C.先减小后增大
D.先增大后减小

【答案】B
【解析】解:AC=m﹣1,CQ=n, 则S四边形ACQE=ACCQ=(m﹣1)n=mn﹣n.
∵P(1,4)、Q(m,n)在函数y= (x>0)的图象上,
∴mn=k=4(常数).
∴S四边形ACQE=ACCQ=4﹣n,
∵当m>1时,n随m的增大而减小,
∴S四边形ACQE=4﹣n随m的增大而增大.
故选B.
【考点精析】利用比例系数k的几何意义对题目进行判断即可得到答案,需要熟知几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=AC=10cmBC=8cm,点DAB的中点.

(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1s后,BPDCQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPDCQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次在ABC的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是(  )

A. 105° B. 110° C. 100° D. 120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点D为射线CB上一个动点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点EEF∥BC,交直线AC于点F,连接CE.

(1)如图①,若∠BAC=60°,按边分类:△CEF ____________ 三角形;

(2)若∠BAC<60°.

①如图②,当点D在线段CB上移动时,判断△CEF的形状并证明;

②当点D在线段CB的延长线上移动时,△CEF是什么三角形?请在图③中画出相应的图形,写出结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,CFAB于F,BEAC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在BAC的平分线上;点C在AB的中垂线上.以上结论正确的有__________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中正确结论的个数是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)

(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的方程x2 +cosα=0有两个相等的实数根,则锐角α为(
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠ACDABC的一个外角,CE平分ACDFCA延长线上的一点,FGCE,交AB于点G,若∠1=70°,∠2=30°,则∠3的度数为(  )

A. 30° B. 40° C. 45° D. 50°

查看答案和解析>>

同步练习册答案