分析 本题要分三种情况进行求解:①当OD=OF时,OD=DF=AD=2,又有∠OAF=45°,那么△OFA是个等腰直角三角形,于是可得出F的坐标应该是(2,2),由于P,F两点的纵坐标相同,因此可将F的纵坐标代入抛物线的解析式中即可求出P的坐标;②当OF=DF时,如果过F作FM⊥OD于M,那么FM垂直平分OD,因此OM=1,在直角三角形FMA中,由于∠OAF=45°,因此FM=AM=3,也就得出了F的纵坐标,然后根据①的方法求出P的坐标;③当OD=OF时,OF=2,由于O到AC的最短距离为2$\sqrt{2}$,因此此种情况是不成立的,综合上面的情况即可得出符合条件的P的坐标.
解答 解:存在这样的直线,使得△ODF是等腰三角形,理由为:
在△ODF中,如图,
,
分三种情况考虑:
①若DO=DF,
∵A(4,0),D(2,0),
∴AD=OD=DF=2,
在Rt△AOC中,OA=OC=4,
∴∠OAC=45°,
∴∠DFA=∠OAC=45°,
∴∠ADF=90°,
此时,点F的坐标为(2,2),
由-$\frac{1}{2}$x2+x+4=2,
解得:x1=1+$\sqrt{5}$,x2=1-$\sqrt{5}$,
此时,点P的坐标为:P(1+$\sqrt{5}$,2)或P(1-$\sqrt{5}$,2);
②若FO=FD,过点F作FM⊥x轴于点M,
由等腰三角形的性质得:OM=$\frac{1}{2}$OD=1,
∴AM=3,
∴在等腰直角△AMF中,MF=AM=3,
∴F(1,3),
由-$\frac{1}{2}$x2+x+4=3,
解得:x1=1+$\sqrt{3}$,x2=1-$\sqrt{3}$,
此时,点P的坐标为:P(1+$\sqrt{3}$,3)或P(1-$\sqrt{3}$,3);
③若OD=OF,
∵OA=OC=4,且∠AOC=90°,
∴AC=4$\sqrt{2}$,
∴点O到AC的距离为2$\sqrt{2}$,而OF=OD=2<2$\sqrt{2}$,与OF≥2$\sqrt{2}$矛盾,
所以AC上不存在点使得OF=OD=2,
此时,不存在这样的直线l,使得△ODF是等腰三角形,
综上所述,存在这样的直线l,使得△ODF是等腰三角形,
所求点P的坐标为:P(1+$\sqrt{5}$,2)或P(1-$\sqrt{5}$,2)或P(1+$\sqrt{3}$,3)或P(1-$\sqrt{3}$,3).
点评 本题考查了抛物线与x轴的交点问题,利用等腰三角形的定义是解题关键,不确定等腰三角形的腰是哪些线段时,要分类进行讨论.
科目:初中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①③④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com