精英家教网 > 初中数学 > 题目详情
1.崇明县校园足球运动正在蓬勃发展,已知某校学生“足球社团”成员的年龄与人数情况如下表所示:那么“足球社团”成员年龄的中位数是14岁.
年龄(岁)1112131415
人数3371214

分析 要求中位数,因表中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.

解答 解:“足球社团”成员年龄的中位数是14岁.
故答案为:14.

点评 考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,是某地2月18日到23日PM2.5浓度的统计图,则这六天中PM2.5浓度的中位数是79.5μg/m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.因式分解
(1)4a2-25b2
(2)-3x3y2+6x2y3-3xy4
(3)3x(a-b)-6y(b-a)
(4)(x2+4)2-16x2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-$\frac{1}{25}$x2,当水面离桥拱顶的高度DO是2m时,这时水面宽度AB为(  )
A.-10mB.-5$\sqrt{2}$mC.5$\sqrt{2}$mD.10$\sqrt{2}$m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边形叫梯形的腰,连接梯形两腰中心的线段叫梯形的中位线,梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.
如图(1)在梯形ABCD中,AD∥BC.
∵E、F是AB、CD的中点,
∴EF∥AD∥BC,EF=$\frac{1}{2}$(AD+BC).
材料二:经过三角形一边的中点与另一边平行的直线必平分第三边
如图(2)在△ABC中,∵E是AB的中点,EF∥BC,
∴F是AC的中点.
请你运用所学知识,结合上述材料,解答下列问题.
如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°
(1)求证:EF=AC;
(2)若OD=3$\sqrt{3}$,OC=5,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过A(0,-2),B(1,0)两点,与反比例函数y=$\frac{m}{x}$(m≠0)的图象在第一象限内交于点M,若△OBM的面积是2.
(1)求一次函数和反比例函数的解析式;
(2)若点P是x轴正半轴上一点且∠AMP=90°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.设正n边形的半径为R,边心距为r,如果我们将$\frac{R}{r}$的值称为正n边形的“接近度”,那么正六边形的“接近度”是$\frac{{2\sqrt{3}}}{3}$(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,抛物线y=-$\frac{5}{4}$x2+$\frac{17}{4}$x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动.过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)当线段MN最长时,求出△ABN的面积;
(4)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM、BN.当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=60°,则∠2=60°.

查看答案和解析>>

同步练习册答案