【题目】已知AB∥CD,点E为AB,CD之外任意一点.
(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;
(2)如图2,探究∠CDE与∠B,∠E的数量关系,并说明理由.
【答案】(1) ∠B=∠BED+∠D. (2)∠CDE=∠B+∠BED.
【解析】
在①中过点E作EF∥AB,由平行线的性质可得∠BEF=∠B,∠D=∠DEF,再根据∠BEF=∠BED+∠DEF等量代换即可得到结果;在②中过点E作EF∥AB,同①的方法,可找到∠BED与∠B、∠CDE的数量关系.
解:(1)∠B=∠BED+∠D.理由如下:
过点E作EF∥AB.
又∵AB∥CD,
∴EF∥AB∥CD.
∴∠BEF=∠B,∠D=∠DEF.
∵∠BEF=∠BED+∠DEF,
∴∠B=∠BED+∠D.
(2)∠CDE=∠B+∠BED.理由如下:
过点E作EF∥AB.
又∵AB∥CD,
∴EF∥AB∥CD.
∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.
又∵∠DEF=∠BEF-∠BED,
∴∠CDE+∠BEF-∠BED=∠B+∠BEF,
即∠CDE=∠B+∠BED.
科目:初中数学 来源: 题型:
【题目】如图,在中,,D是AB上的点,过点D作交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有( )
①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图.
请解答下列问题:
(1)根据统计图,写出这50名工人加工出的合格品数的中位数.
(2)写出这50名工人加工出合格品数的众数的可能取值.
(3)厂方认定,工人在单位时间内加工出的合格品数不低于2件为技能合格,否则,将接受技能再培训,已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点M为直线AB上一动点, 都是等边三角形,连接BN
求证: ;
分别写出点M在如图2和图3所示位置时,线段AB、BM、BN三者之间的数量关系不需证明;
如图4,当时,证明: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,△ABC的外角∠ABD的平分线与∠ACB的平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.
求证:(1)MO=MB;(2)MN=CN﹣BM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图②中阴影部分的面积.
(3)观察图②你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,mn.
(4)根据(3)题中的等量关系,解决如下问题:
已知a+b=7,ab=5,求(a-b)2的值.(写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+mx+m﹣2=0.
(1)求证:无论m取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1 , x2 , 且满足x12+x22=﹣3x1x2 , 求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com