精英家教网 > 初中数学 > 题目详情
如图,点P为△AEF外一点,PA平分∠EAF,PD⊥EF于D,且DE=DF,PB⊥AE于B.
求证:AF-AB=BE.
分析:过点P作PM⊥AF于M,连接PE、PF,根据角平分线上的点到角的两边的距离相等可得PB=PM,根据线段垂直平分线上的点到线段两端点的距离相等可得PE=PF,然后利用“HL”证明Rt△PBE和Rt△PMF全等,根据全等三角形对应边相等可得MF=BE,再根据AF-AM=MF整理即可得证.
解答:证明:如图,过点P作PM⊥AF于M,连接PE、PF,
∵PA平分∠EAF,PB⊥AE,
∴PB=PM,AM=AB,
∵PD⊥EF,DE=DF,
∴PD垂直平分EF,
∴PE=PF,
在Rt△PBE和Rt△PMF,
PE=PF
PB=PM

∴Rt△PBE≌Rt△PMF(HL),
∴MF=BE,
∵AF-AM=MF,
∴AF-AB=BE.
点评:本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DE=BF.
(1)判断△AEF的形状,并说明理由;
(2)若正方形ABCD的边长为2,EF=6
2
,求线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC和△AEF均为等腰直角三角形,其初始位置如图所示,若△AEF绕A点顺时针旋转,则BE与CF大小关系为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角三角形AEF的顶点E在等腰直角三角形ABC的边BC上.AB的延长线交EF于D点,其中∠AEF=∠ABC=90°.
(1)求证:
AD
AE
=
2
AE
AC

(2)若E为BC的中点,求
DB
DA
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点P为△AEF外一点,PA平分∠EAF,PD⊥EF于D,且DE=DF,PB⊥AE于B.
求证:AF-AB=BE.

查看答案和解析>>

同步练习册答案