精英家教网 > 初中数学 > 题目详情
已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.
(1)如图,若PE=,EO=1,求∠EPF的度数;
(2)若点P是AD的中点,点F是DO的中点,BF=BC+3-4,求BC的长.

【答案】分析:(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;
(2)根据三角形中位线定理可得PF∥AO,且PF=AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.
解答:解:(1)如图,连接PO,∵PE⊥AC,PE=,EO=1,
∴tan∠EPO==
∴∠EPO=30°,
∵PE⊥AC,PF⊥BD,
∴∠PEO=∠PFO=90°,
在Rt△PEO和Rt△PFO中,
∴Rt△PEO≌Rt△PFO(HL),
∴∠FPO=∠EPO=30°,
∴∠EPF=∠FPO+∠EPO=30°+30°=60°;


(2)如图,∵点P是AD的中点,点F是DO的中点,
∴PF为△AOD中位线,
∴PF∥AO,且PF=AO,
∵PF⊥BD,
∴∠PFD=90°,
∴∠AOD=∠PFD=90°,
又∵PE⊥AC,
∴∠AEP=90°,
∴∠AOD=∠AEP,
∴PE∥OD,
∵点P是AD的中点,
∴PE是△AOD的中位线,
∴PE=OD,
∵PE=PF,
∴AO=OD,且AO⊥OD,
∴平行四边形ABCD是正方形,
设BC=x,
则BF=x+×x=x,
∵BF=BC+3-4=x+3-4,
∴x+3-4=x,
解得x=4,
即BC=4.
点评:本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD是正方形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,已知平行四边形ABCD.
(1)用直尺和圆规作出∠ABC的平分线BE,交AD的延长线于点E,交DC于点F(保留作图痕迹,不写作法);
(2)在第(1)题的条件下,求证:△ABE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平行四边形ABCD,AD=a,AB=b,∠ABC=α.点F为线段BC上一点(端点B,C除外),连接AF,AC精英家教网,连接DF,并延长DF交AB的延长线于点E,连接CE.
(1)当F为BC的中点时,求证:△EFC与△ABF的面积相等;
(2)当F为BC上任意一点时,△EFC与△ABF的面积还相等吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

49、如图,已知平行四边形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6cm,AD=2cm,求DE、EF、FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.

查看答案和解析>>

同步练习册答案