精英家教网 > 初中数学 > 题目详情

如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为


  1. A.
    2.5
  2. B.
    1.5
  3. C.
    2
  4. D.
    1
D
分析:由已知条件判定△BEC的等腰三角形,且BC=CE;由等角对等边判定AE=BE,则易求BD=BE=AE=(AC-BC).
解答:如图,∵CD平分∠ACB,BE⊥CD,
∴BC=CE.
又∵∠A=∠ABE,
∴AE=BE.
∴BD=BE=AE=(AC-BC).
∵AC=5,BC=3,
∴BD=(5-3)=1.
故选D.
点评:本题考查了等腰三角形的判定与性质.注意等腰三角形“三合一”性质的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知:如图,D为△ABC内一点,AC=BC,CD平分∠ACB.
求证:∠ABD=∠BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4.
证明:△ABC∽△DBE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,D为△ABC内一点连接BD、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、
CE交于E,连接DE.
(1)求证:
BC
AB
=
BE
BD

(2)求证:△DBE∽△ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,D为△ABC内的一点,E为△ABC外的一点,且∠1=∠2,∠3=∠4.
(1)求证:△ABD∽△CBE.
(2)求证:△ABC∽△DBE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O为△ABC内一点,以O为位似中心,作△A′B′C′∽△ABC,且相似比为2.

查看答案和解析>>

同步练习册答案