精英家教网 > 初中数学 > 题目详情
20.计算:$\sqrt{3}tan30°+(\frac{1}{2}{)^{-2}}+|{\sqrt{2}-1}|+\root{3}{-64}$.

分析 原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.

解答 解:原式=$\sqrt{3}$×$\frac{\sqrt{3}}{3}$+4+$\sqrt{2}$-1-4
=$\sqrt{2}$.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.若关于x的不等式$\frac{2x+3}{2}$>2x+$\frac{m}{2}$的正整数解为1,2,3,则m的取值范围(  )
A.-7<m≤-5B.-7≤m<-5C.-5<m≤-3D.-5≤m<-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图:在△ABC中,AB=5,AC=9,S△ABC=$\frac{27}{2}$,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.
(1)tanA=$\frac{3}{4}$;
(2)过P作PN⊥AC于N,设点P运动时间为t,
①PN=3t,QN=9-9t(用含t的代数式表示);
②若正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;
(3)当t为何值时,正方形PQEF的某个顶点(Q除外)落在正方形QCGH的边上,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.下表是截至到2002年菲尔兹奖得主获奖时的年龄:
年龄 28≤X<30 30≤X<32 32≤X<34 34≤X<3636≤X<38  38≤X<40 40≤X<42
 频数 4 3 8 7 911 2
根据表格中的信息计算获菲尔兹奖得主获奖时的平均年龄.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:6tan30°+(3.6-π)0-$\sqrt{12}$+($\frac{1}{2}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列命题的逆命题是真命题的个数为(  )
(1)对顶角相等;(2)等腰三角形的两个底角相等;(3)三组边分别相等的两个三角形全等.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)$\sqrt{2\frac{1}{4}}+\sqrt{(-5)^{2}}+\root{3}{-125}$
(2)|$\sqrt{3}$-2|-|2-$\sqrt{6}$|+|-$\sqrt{6}$|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解不等式组$\left\{\begin{array}{l}3(x+1)≤9\\ x+5>4\end{array}\right.$,并将其解集表示在数轴上.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知不等式4x-a≤0的正整数解是1,2,则a的取值范围是(  )
A.8<a<12B.8≤a<12C.8<a≤12D.8≤a≤12

查看答案和解析>>

同步练习册答案