精英家教网 > 初中数学 > 题目详情
10.已知不等式4x-a≤0的正整数解是1,2,则a的取值范围是(  )
A.8<a<12B.8≤a<12C.8<a≤12D.8≤a≤12

分析 先求出不等式的解集,再根据整数解为1,2逆推a的取值范围.

解答 解:不等式4x-a≤0的解集是x≤$\frac{a}{4}$,
因为正整数解是1,2,
而只有当不等式的解集为x≤2,x≤2.1,x≤2.2等时,但x<3时,其整数解才为1,2,
则2≤$\frac{a}{4}$<3,
即a的取值范围是8≤a<12,
故选B

点评 此题考查不等式问题,解答此题要先求出不等式的解集,再根据整数解的情况确定a的取值范围.本题要求熟练掌握不等式及不等式的解法,准确的理解整数解在不等式解集中的意义,并会逆推式子中有关字母的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.计算:$\sqrt{3}tan30°+(\frac{1}{2}{)^{-2}}+|{\sqrt{2}-1}|+\root{3}{-64}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图是二次函数y=ax2+bx+c图象的一部分,过点(x1,0),-3<x1<-2,对称轴为直线x=-1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④3b+2c>0,其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.$\frac{-21{x}^{3}{y}^{2}}{27{x}^{3}{y}^{3}{z}^{4}}$=$-\frac{7}{9y{z}^{4}}$(化成最简分式);$\sqrt{27{a}^{3}}$=3a$\sqrt{3a}$(化成最简二次根式).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程组
(1)$\left\{\begin{array}{l}{x-2y=4}\\{2x-y=6}\end{array}\right.$       
(2)$\left\{\begin{array}{l}{\stackrel{x+y=8}{y+z=6}}\\{x+z=4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,直线$y=-\frac{3}{2}x+b$经过第一、二、四象限,与y轴交于点B,点A(2,m)在这条直线上,连结AO,△AOB的面积等于2.
(1)求b的值;
(2)如果反比例函数$y=\frac{k}{x}$(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在正方形ABCD中,点P是射线CB上一个动点,连接PA,PD,点M、N分别为BC、AP的中点,连接MN交PD于点Q.
(1)如图1,当点P与点B重合时,△QPM的形状是等腰直角三角形;
(2)当点P在线段CB的延长线上时,如图2.
①依题意补全图2;
②判断△QPM的形状并加以证明;
(3)点P′于点P关于直线AB对称,且点P′在线段BC上,连接AP′,若点Q恰好在直线AP′上,正方形ABCD的边长为2,请写出求此时BP长的思路(可以不写出计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.
(1)求证:四边形DBEC是平行四边形.
(2)若∠ABC=120°,AB=BC=4,则在点E的运动过程中:
①当BE=2时,四边形BECD是矩形,试说明理由;
②当BE=4时,四边形BECD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.我们知道,在反比例函数y=$\frac{2}{x}$的图象上任取一点,过该点分别向两条坐标轴画垂线,这两条垂线与坐标轴围成的矩形面积始终是2.如果在某个函数的图象上任取一点,按同样的方式得到的矩形的周长始终是2,这个函数是y=-x+1(0<x<1).(写出一个满足条件的函数表达式及自变量的取值范围)

查看答案和解析>>

同步练习册答案