【题目】在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为
A. 3 B. 2 C. D.
【答案】D
【解析】
先根据题意,画出图形,令直线y= x+ 与x轴交于点C,与y轴交于点D,作OH⊥CD于H,作OH⊥CD于H;
然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C、D两点的坐标值;
再在Rt△POC中,利用勾股定理可计算出CD的长,并利用面积法可计算出OH的值;
最后连接OA,利用切线的性质得OA⊥PA,在Rt△POH中,利用勾股定理,得到,并利用垂线段最短求得PA的最小值即可.
如图, 令直线y=x+与x轴交于点C,与y轴交于点D,作OH⊥CD于H,
当x=0时,y=,则D(0,),
当y=0时,x+=0,解得x=-2,则C(-2,0),
∴,
∵OHCD=OCOD,
∴OH=.
连接OA,如图,
∵PA为⊙O的切线,
∴OA⊥PA,
∴,
当OP的值最小时,PA的值最小,
而OP的最小值为OH的长,
∴PA的最小值为.
故选D.
科目:初中数学 来源: 题型:
【题目】为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)这次参与调查的村民人数为 人;
(2)请将条形统计图补充完整;
(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(1,2),B(3,2),连接AB. 若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.
(1)在点C(0,2),D(2,),E(4,1)中,线段AB的“临近点”是__________;
(2)若点M(m,n)在直线上,且是线段AB的“临近点”,求m的取值范围;
(3)若直线上存在线段AB的“临近点”,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.
(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?
(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:
第一步:点D绕点A顺时针旋转180°得到点D1;
第二步:点D1绕点B顺时针旋转90°得到点D2;
第三步:点D2绕点C顺时针旋转90°回到点D.
(1)请用圆规画出点D→D1→D2→D经过的路径;
(2)所画图形是什么对称图形;
(3)求所画图形的周长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小西“过直线外一点作这条直线的垂线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ⊥l.
做法:如图,
①在直线l的异侧取一点K,以点P为圆心,PK长为半径画弧,交直线l于点A,B;
②分别以点A,B为圆心,大于AB的同样长为半径画弧,两弧交于点Q(与P点不重合);
③作直线PQ,则直线PQ就是所求作的直线.
根据小西设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵PA= ,QA= ,
∴PQ⊥l( )(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在矩形ABCD中,点F是 BC的中点,DF的延长线与AB的延长线相交于点E,DE与AC相交于点O,若,则( )
A. 4 B. 6 C. 8 D. 10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com