精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC内接于⊙OAC是⊙O的直径,D是弧AB的中点.过点DCB的垂线,分别交CBCA延长线于点FE

(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若CF=6,∠ACB=60°,求阴影部分的面积.

【答案】
(1)

解:直线EF与⊙O相切,理由为:

连接OD,如图所示:

∵AC为⊙O的直径,

∴∠CBA=90°

又∵∠F=90°

∴∠CBA=∠F

∴AB‖EF

∴∠AMO=∠EDO

又∵D为弧AB的中点

∴弧BD=弧AD

∴OD⊥AB

∴∠AMO=∠EDO=90°

∴EF为⊙O的切线


(2)

shan

解:在Rt△AEF中,∠ACB=60°

∴∠E=30°

又∵CF=6

∴CE=2CF=12

∴EF==6

在Rt△ODE中,∠E=30°

∴OD=OE

又∵OA=OE

∴OA=AE=OC=CE=4,OE=8

又∵∠ODE=∠F=90°,∠E=∠E

∴△ODE∽△CFE

,即

∴DE=4

又∵Rt△ODE中,∠E=30°

∴∠DOE=60°

∴ S阴影=S扇形OAD=×4×4-=8-


【解析】:(1)要证EF是⊙O的切线,只要连接OD,再证OD⊥AB即可。
(2)先根据勾股定理求出EF的长,再根据相似三角形的判定和性质求出DE,阴影部分的面积等于△ODE的面积减去扇形OAD的面积即可。
【考点精析】认真审题,首先需要了解切线的判定定理(切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线),还要掌握扇形面积计算公式(在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2))的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知a、b、c满足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.

评估成绩n(分)

评定等级

频数

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根据以上信息解答下列问题:

(1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,内部有6个全等的正方形,小正方形的顶点E、F、G、H分
别在边AD、AB、BC、CD上,则tan∠DEH=( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,当直线BC、DC被直线AB所截时,∠1的同位角是_______,同旁内角是_______;当直线AB、AC被直线BC所截时,∠1的同位角是________;当直线AB、BC被直线CD所截时,∠2的内错角是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,APD的面积为y.(当点P与点AD重合时,y=0)

(1)写出yx之间的函数解析式;

(2)画出此函数的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】找出图中所有的同位角、内错角、同旁内角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连结AE,CE,则△ADE的面积是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图像是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案