精英家教网 > 初中数学 > 题目详情

【题目】
(1)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示. 观察图2可知:与BC相等的线段是 , ∠CAC′=°.

(2)①如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论. 拓展延伸

②如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.

【答案】
(1)AD;90
(2)解:(2)①FQ=EP,

理由如下:

∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,

∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,

又∵AF=AC,

∴△AFQ≌△CAG,

∴FQ=AG,

同理EP=AG,

∴FQ=EP.

②HE=HF.

理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.

∵四边形ABME是矩形,

∴∠BAE=90°,

∴∠BAG+∠EAP=90°,

又AG⊥BC,

∴∠BAG+∠ABG=90°,

∴∠ABG=∠EAP.

∵∠AGB=∠EPA=90°,

∴△ABG∽△EAP,

∴AG:EP=AB:EA.

同理△ACG∽△FAQ,

∴AG:FQ=AC:FA.

∵AB=kAE,AC=kAF,

∴AB:EA=AC:FA=k,

∴AG:EP=AG:FQ.

∴EP=FQ.

又∵∠EHP=∠FHQ,∠EPH=∠FQH,

∴Rt△EPH≌Rt△FQH(AAS).

∴HE=HF.


【解析】解:(1)观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB, ∴∠CAC′=180°﹣∠C′AD﹣∠CAB=90°;
故答案为:AD,90.
(1)观察图形即可发现△ABC≌△AC′D,即可解题;(1)①易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;②过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是(  )
A.y=3x
B.
C.
D.y=x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:
(1)图2中折线ABC表示槽中水的深度与注水时间之间的关系,线段DE表示槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是
(2)注水多长时间时,甲、乙两个水槽中水的深度相同;
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣ x2﹣x+
(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:(a﹣ )÷
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图 ⑥).
(1)求图 ②中∠BCB′的大小;
(2)图⑥中的△GCC′是正三角形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?

查看答案和解析>>

同步练习册答案