精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图 ⑥).
(1)求图 ②中∠BCB′的大小;
(2)图⑥中的△GCC′是正三角形吗?请说明理由.

【答案】
(1)解:由折叠的性质知:B′C=BC,

在Rt△B′FC中,

∵FC是斜边B′C的一半,

∴∠FB′C=30°,

∴∠BCB′=60°

即∠BCB′=60°


(2)解:图⑥中的△CGC'是正三角形

理由如下:

∵GC平分∠BCB′,

∴∠GCB= ∠GCC′= ∠BCB′=30°,

∴∠GCC′=∠BCD﹣∠BCG=60°,

由折叠的性质知:GH是线段CC′的对称轴,

∴GC′=GC,

∴△GCC′是正三角形


【解析】(1)由折叠的性质知:B′C=BC,然后在Rt△B′FC中,含30°角的直角三角形的性质,即可求得∠BCB′的度数;(2)首先根据题意得:GC平分∠BCB′,即可求得∠GCC′的度数,然后由折叠的性质知:GH是线段CC′的对称轴,可得GC′=GC,即可得△GCC′是正三角形.
【考点精析】本题主要考查了翻折变换(折叠问题)和解直角三角形的相关知识点,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.
问题思考:

(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹,并简要说明理由;
(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;
问题拓展:
(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;
(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.
(1)毎位考生有种选择方案;
(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提酲:各种方案用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示. 观察图2可知:与BC相等的线段是 , ∠CAC′=°.

(2)①如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论. 拓展延伸

②如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据第5次、第6次人口普查的结果,2000年,2010年我国每10万人受教育程度的情况如下:
根据图中的信息,完成下列填空:
(1)2010年我国具有高中文化程度的人口比重为
(2)2010年我国具有文化程度的人口最多;
(3)同2000年相比,2010年我国具有文化程度的人口增幅最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y= (x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y= (x>0)图象上异于点P的另一点,请以Q为圆心,QO半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分ABBC于点E,BE=4,则AC长为( )

A. 2 B. 3 C. 4 D. 以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=_____.

查看答案和解析>>

同步练习册答案