精英家教网 > 初中数学 > 题目详情

【题目】
(1)计算:(a﹣ )÷
(2)解不等式组:

【答案】
(1)解:原式=

= ×

=a+1


(2)解:

解①得,x≥1

解②得,x<4

不等式组的解集为:1≤x<4


【解析】(1)先将括号里面的通分并将分子分解因式,然后将除法转换成乘法,约分化简;(2)分别解出两个不等式,再取它们的公共部分.
【考点精析】关于本题考查的分式的混合运算和一元一次不等式组的解法,需要了解运算的顺序:第一级运算是加法和减法;第二级运算是乘法和除法;第三级运算是乘方.如果一个式子里含有几级运算,那么先做第三级运算,再作第二级运算,最后再做第一级运算;如果有括号先做括号里面的运算.如顺口溜:"先三后二再做一,有了括号先做里."当有多层括号时,先算括号内的运算,从里向外{[(?)]};解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.

(1)本次问卷共随机调查了名学生,扇形统计图中m=
(2)请根据数据信息补全条形统计图.
(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数 (k>0)的图象过点E与直线l1相交于点F.
(1)若点E与点P重合,求k的值;
(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;
(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:( 0﹣( 2+tan45°;
(2)解方程: =2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示. 观察图2可知:与BC相等的线段是 , ∠CAC′=°.

(2)①如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论. 拓展延伸

②如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA,PB是⊙O的两条切线,切点分别为A,B,OP交AB于点C,OP=13,sin∠APC=
(1)求⊙O的半径;
(2)求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形纸片ABC的∠C为90°,将三角形纸片沿着图示的中位线DE剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是(
A.平行四边形
B.矩形
C.等腰梯形
D.直角梯形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.

查看答案和解析>>

同步练习册答案