精英家教网 > 初中数学 > 题目详情

【题目】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:

如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.

【答案】20

【解析】

试题分析:由AB∥CD,利用平行线的性质可得∠ABO=∠CDO,由垂直的定义可得∠CDO=90°,易得OB⊥AB,由相邻两平行线间的距离相等可得OD=OB,利用ASA定理可得

△ABO≌△CDO,由全等三角形的性质可得结果.

试题解析:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,∵∠ABO=CDO,OB=OD,AOB=COD,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为(
A.78°
B.75°
C.60°
D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题提出】

用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

【问题探究】

不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.

【探究一】

(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

此时,显然能搭成一种等腰三角形.

所以,当n=3时,m=1.

(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.

所以,当n=4时,m=0.

(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.

若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.

所以,当n=5时,m=1.

(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.

若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.

所以,当n=6时,m=1.

综上所述,可得:表①

【探究二】

(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?

(仿照上述探究方法,写出解答过程,并将结果填在表②中)

(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

(只需把结果填在表②中)

表②

你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…

【问题解决】:

用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)

表③

【问题应用】:

用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了 根木棒.(只填结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O为△ABC的外接圆,圆心O在AB上.

(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);

(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.

①求证:OD⊥BC;

②求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:m6m3的结果(
A.m18
B.m9
C.m3
D.m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为2的小正方形和边长为x的大正方形放在一起.

(1)用x表示阴影部分的面积;
(2)计算当x=5时,阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.

(1)蜘蛛在顶点A′处.

①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线

②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近

(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水星和太阳的平均距离约为57900000km,用科学记数法表示为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是(
A.12
B.24
C.12
D.16

查看答案和解析>>

同步练习册答案