精英家教网 > 初中数学 > 题目详情

【题目】为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MNAD,ADDE,CFAB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点CDE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高   米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)

【答案】2.3.

【解析】

据题意得出tanB = , 即可得出tanA, RtADE, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在RtCEF, EF=x,即可求出x, 从而得出CF=3x的长.

解:

据题意得tanB=

MNAD,

∴∠A=B,

tanA=

DEAD,

∴在RtADE中,tanA=

AD=9,

DE=3,

又∵DC=0.5,

CE=2.5,

CFAB,

∴∠FCE+∠CEF=90°,

DEAD,

∴∠A+CEF=90°,

∴∠A=FCE,

tanFCE=

RtCEF中,CE2=EF2+CF2

EF=x,CF=3x(x>0),CE=2.5,

代入得(2=x2+(3x)2

解得x=(如果前面没有x>0”,则此处应“x=±,舍负”),

CF=3x=≈2.3,

∴该停车库限高2.3米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A(a,1)、B(﹣1,b)都在双曲线y=上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是(

A.y=x B.y=x+1 C.y=x+2 D.y=x+3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)作图发现:

如图1,已知,小涵同学以为边向外作等边和等边,连接.这时他发现的数量关系是

2)拓展探究:

如图2,已知,小涵同学以为边向外作正方形和正方形,连接,试判断之间的数量关系,并说明理由.

3)解决问题

如图3,要测量池塘两岸相对的两点的距离,已经测得米,,则 米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为(  )

A. (1345,0) B. (1345.5, C. (1345, D. (1345.5,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DEDF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.

(1)求购进甲、乙两种纪念品每件各需多少元?

(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7

(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, ,高 相交于点, ,且 .

(1)求线段 的长;

(2)动点 从点 出发,沿线段 以每秒 1 个单位长度的速度向终点 运动,动点 出发沿射线 以每秒 4 个单位长度的速度运动,两点同时出发,当点 到达 点时, 两点同时停止运动.设点 的运动时间为 秒,的面积为 ,请用含 的式子表示 ,并直接写出相应的 的取值范围;

(3)(2)的条件下,点 是直线上的一点且 .是否存在 值,使以点 为顶 点的三角形与以点 为顶点的三角形全等?若存在,请直接写出符合条件的 ; 若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.

请根据图中信息解决下列问题:

(1)共有多少名同学参与问卷调查;

(2)补全条形统计图和扇形统计图;

(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

同步练习册答案