精英家教网 > 初中数学 > 题目详情
7.下列四个生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有(  )
①用两个钉子就可以把木条固定在墙上
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线
③从A地到B地架设电线,总是尽可能沿着直线架设
④把弯曲的公路改直,就能缩短路程.
A.①②B.①③C.②④D.③④

分析 分别利用直线的性质以及线段的性质分析得出答案.

解答 解:①用两个钉子就可以把木条固定在墙上,是两点确定一条之间,故此选项错误;
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条之间,故此选项错误;
③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;
④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;
故选:D.

点评 此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)-CD2,其中结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知:(a+2)2+|b-3|=0,则(a+b)2016=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E
(1)求证:BC是⊙D的切线;
(2)若AB=5,BC=13,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,数轴上线段AB=2,CD=4,点A在数轴上表示的数是-10,点C在数轴上表示的数是16,若线段AB以6个单位/秒的速度向右匀速运动,同时线段CD以2个单位/秒的速度向左匀速运动.
(1)问运动多少秒时BC=8?
(2)当运动到BC=8时,点B在数轴上表示的数是4或16
(3)当3≤t<$\frac{13}{4}$,B点运动到线段CD上时,P是线段AB上一点,是否存在关系式BD-AP=3PC?若存在,求线段PC的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:6tan 30°+cos245°-sin 60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在平面直角坐标系中,点O为坐标原点,直线y=-x+3与x轴、y轴相交于B、C两点,抛物线y=ax2+bx+3经过点B,对称轴为直线x=1.

(1)求a和b的值;
(2)点P是直线BC上方抛物线上任意一点,设点P的横坐标为t,△PBC的面积为S,求S与t之间的函数关系式,并写出t的取值范围;
(3)P为抛物线上的一点,连接AC,当∠BCP=∠ACO时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知一平面图形的面积为100cm2,经过1次平移和2次旋转后,该图形的面积为(  )
A.100cm2B.200cm2C.300cm2D.400cm2

查看答案和解析>>

同步练习册答案