精英家教网 > 初中数学 > 题目详情

已知:AB为⊙O的直径,半径OD∥弦BC,且AD=1,AB=4,那么cos∠B的值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:连接AC,交OD于E.先根据直径所对的圆周角是直角得出∠ACB=90°,再由平行线的性质得出∠AEO=∠ACB=90°,∠AOE=∠B,则求cos∠B的值只需求cos∠AOE的值即可.设OE=x,则DE=2-x.由勾股定理,根据AE的长度不变,得出OA2-OE2=AD2-DE2,列出方程22-x2=12-(2-x)2,解方程求出x的值,然后在△OAE中,根据余弦函数的定义求出cos∠AOE的值.
解答:解:连接AC,交OD于E.
∵AB为⊙O的直径,
∴∠ACB=90°,
∵OD∥BC,
∴∠AEO=∠ACB=90°,∠AOE=∠B.
设OE=x,则DE=OD-OE=2-x.
∵AE2=OA2-OE2=AD2-DE2
∴22-x2=12-(2-x)2
解得x=
在△OAE中,∠AEO=90°,
∴cos∠AOE===
∴cos∠B=cos∠AOE=
故选A.
点评:本题考查了圆周角定理,平行线的性质,勾股定理,三角函数的定义,难度适中,正确作出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

甲、乙两人分别从A、B两地到C地,甲从A地到C地需3小时,乙从B地至C地需2小时40分,已知A、C两地间的距离比B、C两地间的距离远10千米,每行1千米甲比乙少花10分.
(1)求A、C两地间的距离;
(2)假设AC、BC、AB这三条道路均为直的,试判定A、B两地之间距离d的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•钦州)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:
3
,AB=10米,AE=15米.(i=1:
3
是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:
2
1.414,
3
1.732)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年黑龙江省哈尔滨市铁路学校九年级(上)期中数学试卷(解析版) 题型:解答题

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(广西钦州卷)数学(解析版) 题型:解答题

如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)

(1)求点B距水平面AE的高度BH;

(2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)

 

查看答案和解析>>

同步练习册答案