精英家教网 > 初中数学 > 题目详情

【题目】某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)

【答案】解:作CD⊥AB交AB延长线于D,设CD=x 米.
Rt△ADC中,∠DAC=25°,
所以tan25°==0.5,
所以AD==2x.
Rt△BDC中,∠DBC=60°,
由tan 60°==
解得:x≈3.
所以生命迹象所在位置C的深度约为3米.

【解析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数的定义即可求出CD的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,点EF分别在ABAC上,AE=AFBFCE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c过原点O、点A (2,﹣4)、点B (3,﹣3),与x轴交于点C,直线AB交x轴于点D,交y轴于点E.
(1)求抛物线的函数表达式和顶点坐标;
(2)直线AF⊥x轴,垂足为点F,AF上取一点G,使△GBA∽△AOD,求此时点G的坐标;
(3)过直线AF左侧的抛物线上点M作直线AB的垂线,垂足为点N,若∠BMN=∠OAF,求直线BM的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD中,∠MAN=45°∠MAN绕点A顺时针旋转,它的两边分别交CBDC(或它们的延长线)于点MN.当∠MAN绕点A旋转到BM=DN(如图1),易证BM+DN=MN

(1)∠MAN绕点A旋转到BM≠DN(如图2),线段BMDNMN之间有怎样的数量关系?写出猜想,并加以证明.

(2)∠MAN绕点A旋转到如图3的位置时,线段BMDNMN之间又有怎样的数量关系?请直接写出你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是多少;
(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在∠AOB的内部作射线OC,使∠AOC与∠AOB互补.将射线OAOC同时绕点O分别以每秒12°,每秒的速度按逆时针方向旋转,旋转后的射线OAOC分别记为OMON,设旋转时间为t秒.已知t<30,AOB=114°.

(1)求∠AOC的度数;

(2)在旋转的过程中,当射线OMON重合时,求t的值;

(3)在旋转的过程中,当∠COM与∠BON互余时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“珍惜生命,注意安全”是一永恒的话题.在现代化的城市,交通安全晚不能被忽视,下列几个图形是国际通用的几种交通标志,其中不是中心对称图形是(  )
A.禁止行车
B.禁止行人通行
C.禁止车辆长时间停放
D.禁止车辆临时或长时间停放

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1已知 互余 平分

1在图1______ ______

2在图1 请探究之间的数量关系必须写出推理的主要过程但每一步后面不必写出理由);

3在已知条件不变的前提下绕着点O顺时针转动到如图2的位置此时之间的数量关系是否还成立?若成立请说明理由若不成立直接写出此时之间的数量关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形中,点为它们的直角顶点,当有重叠部分时:

(1)①连接,如图1,求证:

②连接,如图2,求证:

(2)当无重叠部分时:连接,如图3,当 时,计算四边形面积的最大值,并说明理由.

查看答案和解析>>

同步练习册答案