【题目】如图,已知半圆O,AB为直径,P为射线AB上一点,过点P作⊙O的切线,切点为C点,D为弧AC上一点,
连接BD、BC.
(1)求证:∠D=∠PCB;
(2)若四边形CDBP为平行四边形,求∠BPC度数;
(3)若AB=8,PB=2,求PC的长度.
【答案】(1)证明见解析;(2)30°;(3)连接OC,PC=.
【解析】试题分析:(1)连接AC,OC,得∠OAC=∠OCA,由AB是直径得∠OCA+∠OCB=90°由圆周角推论可得∠A=∠CDB,由切线性质可得∠OCB+∠PCB=90°,从而可得答案;
(2)由四边形CDBP是平行四边形得∠D=∠P,又∠D=∠BCP,∠D=∠A,所以∠A=∠BCP=∠P,再由AB是直径得∠ACB=90°,然后再由三角形的内角和定理即可得解;
(3)由切线的性质得ΔOCP是直角三角形,再由勾股定理可求出PC的长.
试题解析:(1)如图,连接AC,OC
∴∠D=∠A
∵AB是圆O的直径
∴∠ACB=90°
∴∠ACO+∠OCB=90°
∵CP是切线
∴∠OCP=90°
∴∠OCB+∠PCB=90°
∴∠ACO=∠PCB
∵OA=OC
∴∠OAC=∠OCA
∴∠D=∠PCB;
(2)∵四边形CDBP是平行四边形
∴∠D=∠BPC
∴∠A=∠D=∠BPC=∠PCB
又∠A+∠ACB+∠BCP+∠BPC=180°,且∠ACB=90°
∴∠BPC=30°
(3)∵AB=8
∴OC=OB=4
在RtΔOCP中,OC=4,OP=OB+BP=4+2=6
∴PC=
科目:初中数学 来源: 题型:
【题目】点A、B在数轴上分别表示实数、,A、B两点之间的距离记作AB.
当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB==.
当A、B两点都不在原点时:
(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB-OA====
(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB-OA====
(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA===
回答下列问题:
(1)综上所述,数轴上A、B两点之间的距离AB= .
(2)数轴上表示2和-4的两点A和B之间的距离AB= .
(3)数轴上表示和-2的两点A和B之间的距离AB= ,如果AB=2,则的值为 .
(4)若代数式有最小值,则最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
A.1
B.
C.4﹣2
D.3 ﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com