【题目】如图在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx+c的图象经过点A(3,0)、点B(0,3),顶点为M.
(1)求该二次函数的解析式;
(2)求∠OBM的正切值.
科目:初中数学 来源: 题型:
【题目】大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,分裂后第一个数是____________(用含m的代数式表示);若分裂后,其中有一个奇数是2019,则m的值是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在四边形ABCD中,根据下列不同条件求BD长.
(1)如图1,当∠ABC=∠ADC=30°,AD=DC,AB=9,BC=12时,求BD的长.
(2)如图2,当∠ABC=∠ADC=45°,AD⊥AC,AB=6,BC=5时,求BD的长.
(3)如图3,当∠ABC=2∠ADC=120°,AD=DC,四边形ABCD的面积为4时,请直接写出BD的长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点C(0,4),点A、B在x轴上,并且OA=OC=4OB,动点P在过A、B、C三点的抛物线上.
(1)求抛物线的函数表达式;
(2)在直线AC上方的抛物线上,是否存在点P,使得△PAC的面积最大?若存在,求出P点坐标及ΔPAC面积的最大值;若不存在,请说明理由.
(3)在x轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小方家住户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区城铺设地砖.
(1)求a的值.
(2)铺设地面需要木地板和地砖各多少平方米(用含的代数式表示)?
(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米,装修公司有两种活动方案,如表:
活动方案 | 木地板价格 | 地砖价格 | 总安装费 |
A | 8折 | 8.5折 | 2000元 |
B | 9折 | 8.5折 | 免收 |
已知卧室2的面积是21平方米,则小方家应选择哪种活动,使铺设地面的总费用(包括材料费及安装费)更低?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,D、E、F分别是边AB、BC、CA上的点,且EF∥AB, =2.
(1)设,.试用、表示;
(2)如果△ABC的面积是9,求四边形ADEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【阅读理解】
若, , 为数轴上三点,若点到的距离是点到的距离的倍,我们就称点是的优点.例如,如图①,点表示的数为,点表示的数为.表示数的点到点的距离是,到点的距离是,那么点是的优点;又如,表示的点到点的距离是,到点的距离是,那么但点是的好点.
【知识运用】
如图②,、为数轴上两点,点所表示的数为,点所表示的数为.
()数__________所表示的点是的优点.
()如图③,, 为数轴上两点,点所表示的数为,点所表示的数为.现有一只电子蚂蚁从点出发,以个单位每秒的速度向左运动,到达点停止.当为何值时, 、和中恰有一个点为其余两点的好点?(请直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,,,且∠ABC=900.
(1)求证:四边形ABCD是矩形.
(2)若∠ACB=300,AB=1,求①∠AOB的度数;②四边形ABCD的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com