【题目】解下列方程:
(1)x2+4x﹣1=0;
(2)2x(x﹣3)+x=3.
【答案】
(1)解:x2+4x﹣1=0,
x2+4x=1,
x2+4x+4=5,
(x+2)2=5,
x+2=± ,
x1= ﹣2,x2=﹣ ﹣2
(2)解:2x(x﹣3)+x=3,
2x(x﹣3)+(x﹣3)=0,.
(x﹣3)(2x+1)=0,
x1=3,x2=﹣
【解析】(1)先将常数项移到右边,方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;(2)方程移项变形后,利用因式分解法求解即可.
【考点精析】利用配方法和因式分解法对题目进行判断即可得到答案,需要熟知左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题;已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势.
科目:初中数学 来源: 题型:
【题目】下列现象:(1)电风扇的转动;(2)打气筒打气时,活塞的运动;(3)钟摆的摆动;(4)传送带上瓶装饮料的移动.其中属于平移的是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为s甲2=36,s乙2=25.4,s丙2=16.则数据波动最小的一组是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分别以ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的关系(只写结论,不需证明);
(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF。
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com