精英家教网 > 初中数学 > 题目详情

如图,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C.

(1)点A的坐标为          点B的坐标为         ,点C的坐标为        
(2)设抛物线y=x2-2x-3的顶点坐标为M,求四边形ABMC的面积.

(1)(-1,0),(3,0),(0,-3);(2)9.

解析试题分析:(1)分别令x=0、y=0即可求出A、B、C的坐标;
(2)运用配方法求出顶点M的坐标,作出抛物线的对称轴,交x轴于点D,则四边形ABMC的面积=△AOC的面积+梯形OCMD的面积+△BDM的面积.
试题解析:(1)由y=0得x2-2x-3=0.
解得x1=-1,x2=3.
∴点A的坐标(-1,0),点B的坐标(3,0).
由x=0,得y=-3
∴点C的坐标(0,-3)
(2)如图:作出抛物线的对称轴,交x轴于点D,

由y=x2-2x-3=(x-1)2-4得
点M的坐标(1,-4)
四边形ABMC的面积=△AOC的面积+梯形OCMD的面积+△BDM的面积.
=
=9.
考点: 二次函数图象与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.

(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某职业学校三名学生到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。
A:如果以10元/千克的价格销售,那么每天可售出300千克.
B:如果以13元/千克的价格销售,那么每天可获取利润750元.
C:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到600元?【利润=销售量×(销售单价-进价)】
(3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某相宜本草护肤品专柜计划在春节前夕促销甲、乙两款护肤品,根据市场调研,发现如下两种信息:
信息一:销售甲款护肤品所获利润y(元)与销售量x(件)之间存在二次函数关系y=ax2+bx.在x=10时,y=140;当x=30时,y=360.
信息二:销售乙款护肤品所获利润y(元)与销售量x(件)之间存在正比例函数关系y=3x.请根据以上信息,解答下列问题;
(1)求信息一中二次函数的表达式;
(2)该相宜本草护肤品专柜计划在春节前夕促销甲、乙两款护肤品共100件,请设计一个营销方案,使销售甲、乙两款护肤品获得的利润之和最大,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).
(1)求该二次函数的解析式并写出其对称轴;
(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线经过点(3,0),(-1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在二次函数中,函数y与自变量x的部分对应值如下表:

x

-1
0
1
2
3

y

8
3
0
-1
0

(1)求这个二次函数的表达式;
(2)当x的取值范围满足什么条件时,

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,在平面直角坐标系xoy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线经过点A、B和D(4,).

(1)求抛物线的表达式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图①,在Rt△ACB中,∠C=90º,AC=6cm,BC=8cm,点P由B出发沿BC方向向点C匀速运动,速度为2cm/s;点Q由A出发沿AB方向向点B匀速运动,速度为1cm/s;连接PQ.若设运动的时间为t(s)(0<t<4),解答下列问题:

(1)当t为何值时,PQ的垂直平分线经过点B?
(2)如图②,连接CQ.设△PQC的面积为y(cm2),求y与t之间的函数关系式;

(3)如图②,是否存在某一时刻t,使线段C Q恰好把四边形ACPQ的面积分成1:2的两部分?若存在,求出此时t的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案