【题目】(1)
(2)如图,小方在清明假期中到郊外放风筝,风筝飞到C 处时的线长BC为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度.(,,结果精确到0.1米)
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线交轴于,两点,与轴交于点.连接.
(1)求抛物线的解析式和点的坐标;
(2)“若点为第四象限内抛物线上一动点,点的横坐标为,的面积为,求关于的函数关系式,并求出的最大值;
(3)抛物线的对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图1,在以O为原点的平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,﹣1),连接AC,AO=2CO,直线l过点G(0,t)且平行于x轴,t<﹣1.
(1)求抛物线对应的二次函数的解析式;
(2)若D(﹣4,m)为抛物线y=x2+bx+c上一定点,点D到直线l的距离记为d,当d=DO时,求t的值.
(3)如图2,若E(﹣4,m)为上述抛物线上一点,在抛物线上是否存在点F,使得△BEF是直角三角形,若存在求出点F的坐标,若不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的解析式;
(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.“明天降雨的概率为”,表示明天有半天都在降雨
B.“抛一枚硬币,正面朝上的概率为”,表示每抛掷两次就有一次正面朝上
C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”,表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的概率稳定在 附近
D.某种彩票的中奖概率为,买1000张这种彩票一定有一张中奖
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C有15米的距离(B、E、C在一条直线上),求塔AB的高度(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:
①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;
②过M,N两点作直线MN交AB于点D,交AC于点E;
③将△ADE绕点E顺时针旋转180°,设点D的像为点F.
(1)请在图中直线标出点F并连接CF;
(2)求证:四边形BCFD是平行四边形;
(3)当∠B为多少度时,四边形BCFD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:
时间t(秒) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | … |
行驶距离s(米) | 0 | 2.8 | 5.2 | 7.2 | 8.8 | 10 | 10.8 | … |
假设这种变化规律一直延续到汽车停止.
(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止?
②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1,s2,请比较与的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com